
UC[o. 17299

,:
‘, ,-

,.

Lawrence Livermore Laboratory
THE PRELIMINARY DESIGN OF AN ADVANCED PROGRAMMABLE DIGITAL
FILTER NETWORK FOR LARGE PASSIVE ACOUSTIC ASW SYSTEMS

Thomas McWilliams, Lawrence C. Widdoes, Jre , Lowell Wood

30 September 1976

Prepared for

SIJF?,Jl~TT ‘-o IF!!.f?#!,il .,/L
IN{ n,d’!ii ,q~;K [~(‘:

The Naval Systems Division, Office of Naval Research : “
Arlington,, Virginia
Under ONR Order No. NOO014-76-F-O023

I I

‘“1 This is an informal report intended

A

primarily for internal or limited
external distribution. The opinions
and conclusions stated are those of

~%-~ those of thelaborator,.

the author and may or may not be

11Prepared for U.S. Energy Research &
Development Administration under

~l,~w~, ! contract No. W-7405 -Eng-48.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States Government. Neither
the United States Government nor the University of California nor any of their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by
the United States Government or the University of California. The views and opinions of authors expressed herein do
not necessarily state or reflect those of the United States Government or the University of California, and shall not be
used for advertising or product endorsement purposes.

This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from the
Office of Scientific and Technical Information

P.O. Box 62, Oak Ridge, TN 37831
Prices available from (615) 576-8401, FTS 626-8401

Available to the public from the
National Technical Information Service

U.S. Department of Commerce
5285 Port Royal Rd.,

Springfield, VA 22161

THE PRELIMINARYDESIGN

OF

AN ADVANCEDPROGRAMMABLEDIGITAL FILTER NETWORK

FOR

LARGEPASSIVE ACOUSTIC ASW SYSTEMS

An Interim Report on R~search Work in

Advanced Programmable Digital Filter Network Technology—

Reported by: Thomas McWilliams
Lawrence C. Widdoes, Jr.
Lowell Wood

Special Studies Group
Physics Department

30 September 1976

Prepared for: The Naval Systems Division
Office of Naval Research
Arlington, Virginia

Under: ONR Order #NOOO14-76-F-O023

Ur’tive@yofCa/iforr)iaI?O.BOX808/_ivermore,Caljforria94550 K37_elephone(415)447-1100K!7_wx910-386-8339AECLLLLW14R

u rD < m

z ID
r.

L
1

id

IJ
.

I-
t

+

0 m
c’ V

I
(D

i-
h

I-
%

id
.

l-
i.

60 % m .

0 m

.n

c . m .

I-
t

L
.

0 m

w m

t-
t

+
t

.

i

Section

1.

3%

Introduction
1.1 Advantages of Parallel Processors

System Overview
2.1 System Configuration .
2.2 Processor Organization .

Processor Architecture , . .
3.1
3.2
3.3
3.4

3.5

3.6
3.7

Caches
Virtual Memory . . .
Memory Access Modes .
Synchronization . . .
3.4.I Interrupts . . .
3.4.2 Read-Modify-Write
3.4.3 Munch Registers .
3,4.4 Hardware Queues .

Status.
3.5.I Processor Status .
3.5.2 User Status . .

Input/Output
Instruction Set Definition

. .

. .

3.7.1 Notation and Conventions .
3.7.2 Registers and Memory . .
3.7.3 Instruction Formats . . .

. .

.

3.7.$.I General Operand Address Specification
3.7.3.1,1 Short-Operand Address Calculation
3.7.3.1,2 Extended Addressing .

3.7.3.2 Three-Address Instructions .
3.7.3.3 Two-Address Instructions . .
3.7.3.4 Skip Instructions
3.7.3.5 Jump Instructions‘

3.7.4 Instruction Descriptions
3.7.4.1 Integer Instructions

3.7.4.1.1 Integer Arithmetic . .
$

3.7.4.1.2 Increment and Decrement
3.7.4.2 Floating Point Instructions. .

3,?,4,2.1 Floating Point Arithmetic
3.7.4.2.2 Floating Point Translation

3.7.4.3 Arithmetic Compare Instructions
3.7.4.3,1 Arithmetic Compare and Skip
3,7.4.3,2 Arithrnetic Compare and Jump
3.7.4.3,3 Arithmetic Compare and Set Flag

3.7.4.4 Logical Operations ,.
3.7.4.4.1 Logical Testing
3.7.4.4,2 Logical Assignment
3.7.4.4.3 Shift and Rotate.
3.7.4.4.4 BIT REVERSE

.!

.

.

.

.

.

.

.

.

.

4
4
7

9
9

10
13
14
14
15
15
15
16
16
17
17
18

● 19
19
20
22
22
24
25
26
27
27
28
29
29
31
32
33
34
35
36
37
38
39
39
40
41
42

I

$

ii

Section
,

TABLE OF

37.4.4,5 Bit Counting
3.7,+.4.6 BIT EXTRACT

3.?.4,5 Byte Pointer
~.7.+,6 I,ls[Manipulation

3.7.4,6.I Skipping List Instructions . .
3.7,4,6.2 Non. Skipping List Instructions .

3.7.4.7 Data Transfer
3.7.4.7.1 1310ckTransfer
3.7.+.7.2 Move and Exchange . . .

3.7.4.8 Stack Manipulation
3.’7.4,9 $ubroutine Linkage

3.7.4.9.1 Jump to Subroutine
3.7.4,9,2 Subroutine Context Switching .

3.7.4.I(I Traps and Interrupts
3.7.4,10.1 Trap Instructions . , . .
3.7.4.10.2 Soft-Error Trap
3.7.4.10.3 Hard-Error Traps
?.7.4.10.4 Interrupt
$.7.4.10.5 Trap and Interrupt Returns .

3,7.4.11 Cache Control
3.7.4.12 Page Map Control

3.7.+.12.1 KILL MAP
3.7.4.12.2 Writing Segment Base Registers

3.7,4.13 Status Register Control . . .
3.7,4.13,1 Read Status
3.7.4.13.2 Write Status

3.7.4.14 Synchronization
2.7.4.14.1 SET INTERRUPT . .
2,7,4,14.2 Test and Set/Reset . . .
3.7,4.14.3 Munch Registers
3.7.4.14.4 Hardware Queues . . .

3’7.4.15 Control Store
3,7,4,{~ Miscellaneous . , . . .

3.7.5 $ample Programs
3.7.5.1 Assembly Language Specification .

3,7,5.j,i C)PCODE Field
3.7.5.1.2 GOTO Field , . . .
3.7.5.1.3 OPERANDS Field . . .

3.7.5.2 Use of the T Field
3.7.5.? Compiled Treesort Comparisons .

3.7.5,3.1 BLISS Treesort Algorithm .
3.7.5,3,2 LLL Filter Compilation . .
3.7.5,3.3 BLISS- 10 Compilation for PDP-10.
3.7.5.$4 BLISS- 11 Com~ilation for PDP-I 1.. t

?.7.5.3.5 FORTRAN-H “Compilation for IBM-370/168 .
$.7.5.4 Hand-Coded Quicksort Comparisons

3.7.5,4.1 ALGOL-W Quicksort Algorithm
1,

Page

42
43
44
45
45
46
47
47
48
49
51
55
55
57
63
64
65
6’7
68
69
70
70
71
72
72
72
73
73
73
74
75
76
77
78
78
78
78
78
80
81
82
83
84
86
88
89
90

TABLE OF CONTENTS
,

Section

3.7.5.4.2 LLLFilter Hand-Coding . . .
3.7.5.4.3 PDP-10 Hand-Coding

,: 4. implementation

I 4,1 Processing Element
4 4.1,1 IBOX/EBOX Communication

4.1.1.1 IBOX to EBOX Signals
4.1.1.2 EBOX to IBOX Signals

4.1.2 Instruction Box
4.,1.3 Instruction Box Pipeline Timing

4.1.3.1 index Register File . . . j‘ . . .
4.1.3.2 Instruction Address Arithmetic . . .
4.1.3.3 Data Address Arithmetic

4.1.3.3.1 Register Address Detection . . .
4.1.3.3.2 Data Address Arithmetic Control .
4.1.3.3.3 T Register File

4,1.3.4 instruction and Data Address Translation
I 4.1.3.4.1 Address Translation Cache . . .

4.1.3.4.2 Address Translation LRU Control .
4.1.3.5 Instruction Cache Memory

4.1.3.5.1 Instruction Cache Menlory Module.
4.1.3.5.2 Instruction Cache Control . . .

4,1.3,5,2.I Cache LRU Control . . .
, 4.1.3.6 Data Cache and Register File

4.1.3.6.1 Cache and Register File Control .
4.1.3.6.2 Data Cache Memory

4.1.3.7 Instruction Buffer and Decode. . . .
4.1.3.7.I Instruction Decode

4.1.3.8 EBOX Operand Registers
4.1.3.9 Memory Interface
4.1.3.10 IBOX Control

4,1.3,10.i Instruction Prefetch Control . .
4.1.3.10.2 P-Sequencer Control Unit . . .
4.I.3.10.3 I-Sequencer Control Unit . . .
4.1.3.10.4 EBOX Write Address Registers .
4.1.3.10.5 IBOX Write Control
4.1.3.10.6 Register Address Generation . .
4,1.3.10.7 Micro Interrupts
4.1.3.10.8 Stop IBOX . . . , . . .

~ 4.1.3.10.9 IBOX Timing Generator . . .
4.1.4 Execution Box.

4.1.4.1 EBOX Register File
4.I.4.I.1 EBOX Register File Control . .
4.1.4.1,2 36 Bit Translate

4.1.4.2 EBOX ALU
4.I.4.2.I 3 Input Adder

4.1,4.2,1.1 EBOX 40 Bit Full Adder .

!..

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

.,.

. . .

. . .

.,.

. . .

. . .

. . .

. . .

. . .

.,. .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
,..
. . .

. . .
111

Page

91
92

93
93
94
94
95
96
98

100
103
105
108
110
112
114
117
119
121
123
125
127
129
131
133
137
140

,143
146
153
155
160
163
167
172
175
179
183
185
187
189
191
194
196
198
200

iv

Section

5.

6.

TABLEOFCONTENTS

4.1.4.2.1.2 Multiply Control
4.1.4.?.2 Shift Box

4,1.4.2,2.I Shifter
4.1.4.2.2.2 StickyBit Generator

4.1.4.2.3 Exponent Box “.
4.1.4.2.4 36 Bit MUX Merge
4.1,4.2.5 QRegister

4.1.4.3 EBOX Control
4.1.4.3.1 EBOX Sequencer

4.I.4.3.I. I 12 Bit Branch Address Merger .
4.1,4.3.1.2 EBOX Branch Condition MUX

4.1.4.3.1.2.1 Repetition Counter
4.1.4.3.1.3 EBOX Control Store .

4.1,4.3.2 Fix up Generator
4.1.4.3.3 Status Registers
4.1.4.3.4 EBOX Transmitters/l? eceivers .

4.1.4.4 Timing . . .
4.2 Interconnection Network . .

Summary

References

Appendix

Appendix

Appendix

Appencl ix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

Appendix

1:

2:

?);

4:

5:

6:,

7:

8:

9:

10:

II:

12:

Abbreviations . .

Micro-Code Conventions

P-Sequencer Micro-Code

P-Sequencer Micro-Code

P-Sequencer Micro-Code

,.
. .

.,

. .

. .

,.

Fields

Macros .

. . .

I-Sequencer Micro-Code Fields .

I-Sequencer Micro-Code Macros .

I-Sequencer Micro-Code . . .

E-Sequencer Micro-Code Fields .

E-Sequencer Micro-Code Macros

E-Sequencer Micro-Code . . .

Low-Level Macro Drawings . .

Page

208
213
215
219
221
224
227
229
231
233
235
237
239
244
247
249
253
255

273

274

275

278

279

281

282

307 ,

313

314

318

332

336

355

●

L Introduction

This report describes the design of an extremely high performance programmable digital filter of ‘?’
novel architecture, the LLL Programmable Digital Filter (LLL Filter),

—. v
#

Essentially all of the perceived Navy requirements for advanced digital processing systems may be
effectively addressed with parallel processing systems, in which relatively independent processing
units work in parallel on portions or sub-divisions of the entire problem, exchanging information
with each other during the course of processing. This is the case whether one is concerned
primarily with fleet defense. (in which various processors might provide local control and
monitoring of sensors or weapons systems while sharing information with each other on the time-
varying aspects of attack and defense parameter spaces, both within single ships and between
them), with SOSUS (in which each hydrophore array might have its own powerful processing
unit exchanging filtered information with essentially identical units in all other stations
monitoring a common region of the ocean, for coherent processing techniques such as aperture
synthesis, or for accuracy enhancement or reliability purposes), or weather prediction (in which
each processor might handle meteorological data acquisition and time-advanced extrapolation for
its own, relatively small section of the simulated air+cean envelope, exchanging interface
condition information with those of its fellow processors responsible for adjacent sections).

Moreover, the enormous demands on digital processing power which Navy requirements, of which
the forego~ng are only examples, impose on modern digital processing technology appear to be
most fully satisfied in the foreseeable future only by extensive use of parallel processing techniques
and hardware. The doubling time for raw processing power from single processing unit
superprocessors (for example, the CDC 6600/7600 series) has been increasing steadily over the last
decade, and presently appears to be more than 4 years, a sharp contrast to the 1.5 year figure
characteristic of the late 50s and early 60s. Parallel processing systems, on the other hand, are
capable of indefinitely great extension in raw processing power with essentially zero technological
risk and time lag, and moreover, with advance knowledge of system performance and thus cost-
effectiveness

We have therefore undertaken to determine the optimal structure of a parallel processing system
for addressing the specific Navy application centering on the advanced digital filtering of passive
acoustic ASW data of the type obtained from the SOSUS net.

2 Introduction 1.1

1.1 Advantages of Parallel Processors ~

For problems which involve algorithms amenable to parallel processing ([Amdahl 19671,
[Bali 19621, [Carroll 19671, [Flynn 19661, [Katz 19701), parallel architectures can offer
certain major advantages over sequential architectures. The advantages result from the
modularity inherent in parallel architectures. These advantages can be categorized as advantages
of reliability, economy, and size.

The advantage of reliability has been discussed extensively (for example, see [Barker 1975] or
[Hamer-Hodges 19731);failure of a single module may not entail failure of the entire system if
the module failure can be detected and the module replaced by a duplicate under program control.

Of primary importance among the advantages of economy are the economies of scale in the
construction phase; by repeating the construction of a single processing element many times, the
total cost per processing element may be greatly reduced.

A second economy of scale comes in the design phase. Theoretically, the design cost per processing
element is reduced asymptotically to zero as the processing element is replicated. Actually, any real
parallel processor must include some design costs per processing element which grow as the
number of processing elements is increased, but these costs may be negligible.

A third important economy has been overlooked in previous parallel processor design efforts; it is
the potentially reduced time lag between the freezing of the system design and the delivery of the
first operational system. Although this time lag may include both hardware and software
contributions, the software contribution will be neglected in this analysis. Essentially, by
replicating a relatively simple processing element many times and using a regular interconnection
network, the lag time mentioned can be made very small; it is virtually independent of the
processing power of the total system. As a result, the semiconductor technology used in a properly
designed parallel processor can be nearly state-of-the-art, whereas the technology used in a more
complex processing structure must be considerably more out of date. This time-lag phenomenon
will continue to seriously degrade the cost-effectiveness of delivered complex systems as long as
advancing semiconductor technology continues to provide exponentially more cost-effective
components, but may be essentially eliminated in advanced parallel processing systems.

One additional economy has also been overlooked in the past; this economy results from the
freedom of the parallel processor designer to choose the most cost-effective processing element
structure independent of the processing power of the element. Cost-effectiveness of sequential
processor structures is not constant over all levels of processing power. Although the specific
shape of the cost-effectiveness curve depends upon the technology available and upon the
characteristics of the target problem domain, for any specific technology and problem domain the
cost-effectiveness curve has a finite number of broad maxima. Because the design of a digital
processing system must be aimed not only toward maximum cost-effectiveness, but toward some
minimum processing power, designers of single processor seqtiential systems have not been able to
utilize structures with possibly higher cost effectiveness but lower processing power. On the other
hand, the designer of a parallel processor may be able to achieve a total cost-effectiveness which
is nearly the same as the cost-effectiveness of the processing element, and since the processing
element may not be constrained to have a large minimum processing power, to achieve higher
total cost-effectiveness.

Independent of these economic advantages is the advantage of size; regardless of whether it is
economically feasible to build increasingly powerful sequential systems, at some point it becomes
physically impossible (with state-of-the-art technology) to build these machines. It can be argued

*

1.1 Introduction 3

that sequential systems of almost arbitrary speed can be built given enough resources, and so the
advantage of size reduces to the advantage of economy. However, from a practical viewpoint, at
some point the cost of a sequential system increases so rapidly with speed that this argument is
moot, and in addition, there are theoretical limits both in physics ,and mathematics to the speed of
sequential machines, and these limits do not apply to parallel processors working in appropriate
problem domains. This advantage of parallel processor structures is important because for the
forseeable future it will be desirable to build systems with more total processing power; numerical
weather prediction with its real-time constraints is an obvious example.

These arguments about the advantages of parallel processors are applicable without modification
only if the target problem domain can utilize with high efficiency each processor in a parallel
processor system of arbitrary size. The suitability of various problems for parallel processing has
been the subject of much academic contention ([Amdahl 19671, [Flynn 19661,
[Minsky 1971]). Unfortunately, only a few parallel architectures have proven economically
viable, so there has been little impetus to develop new algorithms for exotic parallel machine
architectures. We believe that the computational simulations of many large physical problems, for
example, the optimal SOSUS digital filtering problem, are so well-suited for parallei processor
architectures and so important, that any one such simulation alone is sufficient justification for

e the intensive development of such digital processing technology.

b

)

4

2. Svstem Overview

The LLL Programmable Digital Filter consists of high-performance processors that execute
independent instruction streams and access a common main memory via a crossbar interconnection
network (crossbar). AII of main memory is uniformly accessible by every processor.

The crossbar arbitrates access by all processors to 16 block storage modules (BSMS) which are
interleaved on either the most significant or the least significant address bits (manually selectable).
Ignoring conflicts, approximately 1 micro-second is required to accomplish a memory read of four
36-bit words.

c1

,,,;2

The crossbar contains facilities for logically disconnecting (amputating) any processor.
A reputation of processor Pi can be invoked by any other processor P~. In order to prevent
processors, errant due to either hardware or software reasons, from performing spurious
amputations, an amputator must, by convention, pass elaborate software correctness tests (which
will involve confirmation by other processors).

The programmable digital filter has been optimized to include 16 processors. Each processor
contains a novel dual cache, which buffers the interconnection network against processor accesses
to instructions and local variables. Processors do not have local memory. No connections exist
between processors except through the crossbar.

Interprocessor communication takes place in main memory; memory management hardware allows
protection of interprocessor communication, Interprocessor synchronization is accomplished by a
combination of primitive mechanisms including interrupts, which can be sent from any processor
to any one other processor over the crossbar, special mutual exclusion hardware, which is
addressed as memory, read-modify-write capability in the crossbar, and special memory access
modes (specified in the virtual-to-real map) which force some memory accesses to bypass the
caches;

An extremely high-level instruction set improves the individual “processor performance by
reducing the number of instructions which need to be executed. Furthermore, natural addressing
modes are complex, and therefore the processor implementation separates addressing and

●
execution into three parallel micro-processors. The instruction set is horizontally micro-
programmed in writeable control store, and can therefore be extensively modified to reduce
execution time and code size for specific applications.

A large virtual memory space is provided in order to allow the architecture and software to
remain fixed while memory costs decline and real memory size increases.

2.1 System Configuration

Figure 2.1-1 shows an overview of the LLL Programmable Digital Filter.
b

Main memory is divided into a“ number of block storage modules (BSMS) that can be
simultaneously and independently accessed by any of the processors. When two or more
processors demand access to any one BSM, memory contention logic establishes a queue. The
queueing discipline is such that no processor can access a given memory BSM twice before a
processor desiring to access that BSM is allowed to access it once.

Each processor communicates with the crossbar over two unidirectional 25-bit cables. The

2. I System Overview

crossbar communicates with memory over two unidirectional
switch is 25 bits serial in each direction.

“5

50-bit cables. Internally, the crossbar

Main memory provides a path for interprocessor communication. Interprocessor synchronization
1 is accomplished by means of munch registers, which appear as memory locations, hardware

queues, which are accessed as memory locations, read-modify-write capability in the crossbar, and
inter-processor interrupts. Interrupt requests are sent through the crossbar and are handled by
the interrupt controllers. Whenever a processor is interrupted by its associated interrupt
controller, it performs memory accessesto determine the nature of the interrupt.

Input/output is accomplished in two ways. For low speed 1/0 devices such as terminals, data is
transferred by the writing and reading of the 1/0 control words, which are addressed as memory,
and are located in the various memory controllers. Each low-speed 1/0 device is attached to some
specific interrupt controller, and thus can interrupt one processor. The interrupted processor may
then forward the interrupt. High-speed 1/0 devices (for example, disks) are handled by a direct
memory access (DMA) port, which communicates with main memory in the same way as all the
processors do.

●

We summarize the the ma~r characteristics of the system architecture as follows:

- Multiple (i6) identical processors execute independent instruction streams.

Every processing element can uniformly address all system memory through a (25-
bit serial) crossbar switch.

Each processing element has dual private caches to reduce contention for main
memory, to reduce average memory access time, and to insure that system
performance does not seriously degrade as more processing elements (and
therefore a bigger and slower interconnection network) are added.

.,,.>,,
Each processing element can direct an interrupt to,~n ~ther processing element.

‘% di>< ,: ~

Munch registers, hard ware queues, and read-modify-write memory capability are
available for synchronization.

- The virtual-to-real memory maps include access mode bits which allow efficient
sharing of data and instructions.

co

—
.‘r

,..

t--

.—

-t’ —
.

,,.

—dus.—

A
-

L
—

-..-—
.1

—
—
1

2.2 System Overview 7

2.2 Processor Organization

The processors shown in Figure 2.1-1 are complete high-performance computing elements which
could be used in either a uniprocessor or multiprocessor configuration; they are extremely cost
effective in either environment.

The processor architecture and design are described in Section 3 and Section
4. The basic processor organization is shown in Figure 2.2-1.

Each processor has dual high-speed cache$ one contains only instructions, and the other contains
data. Writes ordinarily do not update main memory, but affect only the caches (see Section
3.1 and Section 3.3 for full detail).

A virtual-to-real address map in each processor translates addresses generated by instructions into
addresses used by the hardware, and also defines access modes for memory pages. A page can be
tagged as not cacheable, in which case it is never placed in the cache, and all writes to the page
then write through to main memory.

The Instruction Box (IBOX) contains a ,general-purpose micro-programmed sequencer, which
executes out of writeable control store. The lBOX performs all operations required to decode
instructions and fetch operands. In particular, the lBOX performs the virtual to physical address
translation, implements the various memory access modes, handles communication with the
crossbar, and fields interprocessor interrupts.

The IBOX also controls the Execution Box (EBOX). The EBOX performs all arithmetic and
logical operations except those involved in addressing. The organization of the EBOX is similar
to that of the IBOX; it contains a micro-programmed controller and internal registers. The
EBOX is designed for high-speed floating point arithmetic its floating point algorithms allow
three rounding modes; true stable rounding, ceiling rounding, and floor rounding.

b

,

●

8
●

,TO INTERRUPTCONTROL

/ TO MAINMEMORY

System Overview

INSTRUCTIONBOX (IBOX)

d INSTRUCTION
CACHEMEMORY

I INSTRUCTION
CONTROL

I I I I

K J
I [1

BOX

l-l

OATA
CACHEME1’10RY

1/ I J

4 REGISTERS

I

1’ I

EXECUTIONBOX
CONTROL I

~

~XECUTIONBOX (EBOX)

2.2

I

●

Figure 2.2-1
Processor Organ ization

*

9

3, Processor Architecture

We summarize the processor’s major architectural features as follows:

A very large (228 word) virtual address space to allow each processor to uniformly
address any system memory of feasible size in the forseeable future.

- Efficient mechanisms for allowing the executive to communicate with user
processes.

- A high-level instruction set ideally suited for compilers.
●

An instruction set specifically tailored to reduce the frequency of pipeline
interlocks in a high-performance implementation.

The capability to perform three-operand instructions through the use of a unique
“T-field” descriptor.

* Comprehensive floating-point capability, including three rounding modes and the
option to trap on excess pre- or post-normalization.

The capability to directly perform operations on operands of 4 precision:
quarter-word, half-word, single-word, and double-word.

- Special instructions for dealing with the multiprocessor environment.

Certain processor implementation details are included in this section for clarity; processor
implementation is fully described in Section 4.

3.1 Caches

Each processor has a private cache; this cache reduces memory contention and reduces access time
for areas of locality, thereby lowering the performance requirements for the switching network
and main memory.

The cache is implemented in two parts; the instruction cache, and the data cacAe. Both caches can
be read simultaneously, allowing instructions representable in one word, requiring only one
execution cycle, and having at most one memory operand to be executed continuously at a rate of
one instruction per cache cycle (approximately 100 nano-seconds); the instruction set has been
optimized so that instructions of this type predominate dynamically. Each cache is set-associative,
with a set size of 4 and a capacity of 4K words (1K lines of 4 words each).

The instruction cache retains only locations accessed as instructions, and the data cache retains
locations accessed as operands of an instruction. (Note, that instruction words may be accessed as
data.) The hardware insures that no memory word is contained in both caches as follows:
instructions are always fetched from” the instruction cache. If a necessary instruction is not
resident in the instruction cache, then a 4-word line is fetched from the data cache or memory, in
that priority, and is evicted from the data cache. If the line was marked as having been altered in
the data cache, then it is written out to memory. The instruction cache contains no mark bit;
writes and data reads always access the data cache. If a necessary data line is not resident in the
data cache, then it is fetched from the instruction cache or memory, in that

10 Processor Architecture 3.1

priority, and is evicted from the instruction cache. This discipline insures that no,memory word is
contained in both caches simultaneously, with the disadvantage that it forces slow transitions
between writing and executing or executing and writing any block of instructions.

The cache uses p@$ical addresses to tag entries, allowing the software to switch virtual address
spaces without sweeping the cache, and eliminating the problem of clogging the cache with
multiple copies of shared read-only data.

●

For communication or synchronization reasons, it will be necessary at times to insure that certain
variables are not present in the cache of a specific processor. Access modes may serve this
purpose, as described in Section 3.3, but in addition two special instructions are
provided: The instruction “KILL DATA V,L” sweeps the data cache, writing to memory (if
marked) and invalidating every entry which has a virtual address U such that VSUSV+L-1 (L is
assumed to be a count of quarter-words). The instruction “KILL INSTR V,L” performs an
identical function for the instruction cache (in which no entry is ever marked). The instruction
“KILL DATA INSTR” performs both sweeps.

For reasons of efficiency, it may be convenient to avoid invalidating the cache residents swept by
* the KILL instructions. A special instruction is provided for this purpose The instruction

“UPDATE DATA V,L” sweeps the data cache, writing to memory (if marked) every entry which
has a virtual address U such that VSU<V+L-1 (L is assumed to be a count of quarter-words).
No analogous instruction is provided for the instruction cache, since instruction cache entries
cannot be marked.

Depending upon the magnitude of L in these KILL and UPDATE instructions, the hardware
may sweep the entire cache instead of individually sweeping each location in the specified range.

No instructions are provided which, when executed on processor Pi, cause the cache of processor
Pi (i#j) to be swept. This necessary function will be accomplished by directing a special interrupt

I from Pi to Pi which causes PI to sweep its own cache.

3.2 Virtual Memory

The LLL Filter uses paging to map 30-bit virtual addresses to 30-bit real addresses (although the
particular implementation of the LLL Filter described in Section 4 uses only 28-bit
real addresses).

The virtual-to-real address map is shown in Figure 3.2-1. A virtual address space is
uniquely identified by the contents of the segment ba$e register, which is the main memory address
of the segment pointer table for the address space, or is a pointer to the disk address of same. The
segment pointer table is a contiguous list of segment table pointers. Each segment table pointer is
either the main memory address of a segment fable, or the disk address of same, or is null,
indicating that the segment table does not exist, Each segment table is a contiguous list of page
tabte pointers. Each page table pointer is either the main memory address of a page table, or the
disk address of same, or is null, indicating that the page table does not exist. Each page table
contains a list of page table entries. Each page table entry contains either the main memory
address of a page, or the disk address of same, or is null, indicating that the page does not exist.

.

A n address translation in general involves three memory references, one to the segment pointer
table, one to the segment table and one to a page tabl~ the segment base register is a hardware
register inside the processor. A page map in each processor contains (for the most recently used
pages) the complete translation from virtual page address to real page address.

.

3.2 Processor Architecture 11

The processor contains two hardware page map$ one translates addresses of locations accessed as
instructions, and one translates addresses of locations accessed as data. Each page map is
implemented as a set-associative memory with a set size of four and a capacity of 64 entries,
therefore 128 address translations can be stored simultaneously in the processor. An entry may be
stored in both page maps.

The processor hard ware actually contains two segment base registers, EXEC-SEG-BASE-REG,
and US ER.SEG-BASE-REG; an instruction may conveniently specify that either be used in
mapping each memory operand” of an instruction (see the discussion of the M bit in Section
3.7.3.1.z). Each page map entry contains a bit called the ba$e bit, which identifies which of
the two segment base registers the entry is associated with. The address space specified by
EX EC.-SEG-.BASREGEG will be called the executive address space, and the address space
specified by USER. SEG_BA SE_REG will be called the user address space.

Whenever a segment base register is altered, all page map entries associated with that segment
base register must be invalidated: The instruction “WRITE EXEC JUMP X,J” loads
EXEC_SEG_BASE-REG with X, invalidates all page map entries associated with
EXEC_SEG.BASE-REG, and jumps to location J. The instruction “WRITE USER JUMP X,J’”
loads USER_SEG_BASE-REG with X, invalidates all page map entries associated with
USER-SEG.-BASE-REG, and jumps to location J. ‘

In user mode, any reference to the executive address space causes a trap to the executive trap
vector at address REF-EXEC. The executive may refer to the user address space without
trapping.

Whenever a necessary translation is not resident in a page map, the necessary entry is fetched
from memory and placed in the page map. A page map resident may be evicted in this process,
but page map residents need not be written to memory when evicted. Whenever an entry is
fetched from memory, the reference bit is set in the page table entry h memory; this reference bit
is used by the operating system in the page replacement algorithm:

The data cache page map contains a mark bit for each entry. When a write occurs, if the page
written is unmarked in the data cache page map, then the mark bit is set in the appropriate page
table entry in”memory and in the data cache page map. If the page written is marked in the data
cache page map, then the page table entry in memory is not modified. Mark bits are not
necessary in the instruction cache page map since all writes are done to the data cache.

Whenever the executive needs to modify page table entries to reflect the changing configuration
of real memory, a protocol must be invoked which removes invalidated page table entries from
the two page maps of each processor. The hardware refills the page maps directly from main
memory, bypassing the caches, therefore invalidated page table entries need not be removed from
the caches. Special instructions are provided for removing entries from both page maps
simultaneously: For example, the instruction “KILL USER MAP V“ will remove any entry in the
instruction cache page map or the data cache page map which maps virtual address V in the user

add ress space to any real address. The protocol mentioned above then requires that the processor
Pi, executing the operating system, interrupt each processor Pi which may have in its page maps
the ent~y to be modified, and cause each such P~to execute a KILL USER MAP instruction.

I

Processor Architecture 3.2

VIRTUALADDRESS
I

8 6 6 8 2
L

78

SEGflENT
POINTER TABLE

\
7

\
i Ll-x-!-

F: VALIO BIT
DISKltlEPIORYFLAG

I I

13 14 19 20

SEGf”lENTTABLE

T
‘+

256

A: PAGE ACCESSMODEBITS

II PAGE TABLE

FI 30 B 0

+ F 20 B. A
I

64

T

u“

Figure 3.2-1

7
27 28 29

QW/HIJSELECTION

PAGE

0

256

Virtual to Real Address Translation

Processor Architecture 13

3.3 Memory Access Modes

Each page table entry includes bits which specify the access modes of the page. The names and
mean ings of these bits are as follows

● Instructions. If this bit is false, then a hard “trap to the executive at trap vector
NOT_INSTRUCTION wil[occur when a location from this page is accessed as an instruction.

*

~. If this bit is false then a hard trap to the executive at trap vector NOTDAT.A wili occur
when a location from this page is accessed as an operand of an instruction.

,.
Read-throurzh. If this bit is true; then any read of a location on this page will cause a memory
access to occur; the resulting data will be placed in the cache if and only if the location is already
a cache resident.

Write-only. If this bit is true, any read from a location on this page will cause a hard trap to the
executive at trap vector WRITE.ONLY.

Wr!te-allocate, If this bit is true, then any write miss will allocate a cache entry and the data will
be written into the allocated entry. Write hits will simply update the cache entry. If this bit is
false, then a ‘write miss will not allocate a cache entry.

Write-through. If this bit is true, then any write will update memory. If the write is a write hit,
then cache will be updated as well. If the write is a write miss, then if and only if the write-
allocate bit is true, a cache entry will be allocated and written.

The combination in which both write-allocate and write-through are false is reserved to mean
“read-oniy”. A write to a read-only page will cause a hard trap to the executive at trap vector
READ.ONLY.

Combinations of these bits allow us to obtain many useful access modes, of which the following
are examples:

Local-data (data A write-allocate) A cache miss caused by reading an operand from a local-data
page causes the four-word block containing the missed word to be read over the switching
network and placed in the data cache. Writes to local-data pages do not write through to main
memory Whenever it is important that the memory shadow of a local-data page be made .
identical to the cache, the “UPDATE DATA” or “KILL DATA” instruction must be executed to
update main memory. It is intended that the private variables of a process be identified as local-
data pages cache sweeping will be necessary if the process ever moves to another processor.

Cached-read-data (data) A cache miss in a cached-read-data page causes the missed word to be
read over the switching network and placed in the cache. No writes are allowed to a cached-

4 read-data page; such a page is created by writing it as a local-data page, executing the instruction
“UPDATE DATA” or “KILL DATA”, and finally changing the appropriate page table entries to
convert the page into a cached-read-data page. A cached-read-data page is destroyed by
destroying the access route to the page, that is, by destroying all information about it in page
tables in memory, and removing it from all page maps. AIthough locations from a cached-read-
page may be resident in the cache, they will be replaced by new cache residents. Since locations
from a cached-read page can not be marked in any cache, no cache sweep is necessary to destroy
such a page.

14 ,’ Processor Architecture 3.3

Static-code (instructions). A static-code page is similar to a cached-read-data page, that is, it is
cached, created, and destroyed in the same way as a cached-read-data page. However, locations
on a static-code page can be accessed only as instructions. It is intended that shared routines will
be identified as static-code.

Dynamic-code (instructions A data A write-allocate). In order to avoid the large overhead of
.

cache sweeping and page-table modification, some programs may write dynamic-code pages and
execute them immediately. Dynamic-code pages are the same as local-data pages, except that
locations from these pages may be accessed both as instructions and as data ,+,

Shared-data (data A read through A write-through). Words from shared-data pages are never
placed in the cache. A write to a shared-data page writes through to main memory without
writing in cache (write-allocate is false), and a read from a shared page reads directly from main
memory. 1/0 registers and munch registers (see Section 3.4) are on shared-data pages.
In addition, locations which are heavily shared by multiple processors are on shared pages,
elimin sting the necessity to perform repeated cache sweeps when passing small amounts of data
between processors.

3.4 Synchronization
●

Several mechanisms are provided to allow efficient process synchronization:
modify-write memory capability, munch registers, and hardware task queues,

interrupts, read-

3.4.1 Interrupts

Each BSMi contains one interrupt controh’er, which is directly attached to processor Pi by four
interrupt lines, lNT. L1NE<03>, as shown in Figure 2.1-1. The function of the interrupt
controller is to receive interrupts from 1/0 devices (both low- and high-speed), which are directly
connected to the interrupt controller, and from processors, which send interrupts through the

● crossbar, and to assert the interrupt lines accordingly.

The interrupt controller contains four 36-bit registers, INT_REG[03]<O:35>, which can be
accessed over the crossbar as memory locations. The sole function of the interrupt controller is to
set INT_.LINE<i> if and only if INT_REC[il<j>= 1 for some j. Each 1/0 device is connected to
one bit of one INT. REG; the 1/0 device interrupts by setting that bit. No 1/0 device is
connected to INT. REGIO]. Any processor Pi may interrupt any other processor Pj by setting some
bit in Pi’s INT. REGIOI. Specifically, “SET INTERRUPT J,I” executed by any processor sets
location J to (J or 1) using a read-modify-write memory access. By convention, when Pi interrupts.
P~, Pi will set bit i in P~s INT_REGIO1.

I Whenever INT. LINE<k> to processor Pi is asserted, Pj compares its current priority (PRIO) to k,
which i~ the priority of the interrupt. If and only if PRIO is less than k, Pj will acknowledge the
interrupt by resetting a bit in its interrupt register INTIEC[k] under micro-code control. If
more than one INT..LINE is asserted, then the INT_LINE with the higher priority will be
acknowledged first.

After acknowledging the interrupt, Pi interrupts to the executive at a specific interrupt vector, the
address of which depends upon the identity of the 1/0 device or processor which caused the
interrupt; that identity is fully determined by the index of the bit in INT-REG[k] which caused
the interrupt and which Pi reset in acknowledgement. Section 3.7.4.10 contains a complete
description of flow of control during an interrupt after interrupt acknowledgement.

15

3.4,2 Read-Modify-Write

The crossbar network has the capability to perform read-modify-write memory cycles. This

6 capability is used to implement special instructions such as “TEST AND SET”, and
“INTERRUPT”, and to implement hardware queues. Normal instructions which access a memory
location as both a source and the destination do not use read-modify-write memory access
capability.

To perform a read-modify-write memory access, processor Pi) under micro-code control, sends a
read-modify-write request to the crossbar. The crossbar causes the addressed memory module to
read and returns the data to Pfi The crossbar prevents any other processor from accessing the
selected memory module until Pi returns a write.

3.4.3 Munch Registers

We borrow the concept of munch registers from Steele ([Steele 1975]). Associated with each
processor is at least one munch register. Munch registers are identified by their page table entries
as being shared-data. The instruction “MUNCH SKIP NOT FULL ADR M,V’* executed by
processor Pi translates V into a real address R and writes R into the munch register at address M.
The munch register controller allows R to be written into M if and only if no ot~er muncA register
contains)?, otherwise the controller writes zero into M. After writing to M, Pi reads M and skips
if and only if the result is non-zero, that is, if and only if there was no conflict.

Munch registers can also be read and written with normal memory-reference instructions, in
particular, a munch register M is returned to the free state by writing zero into it. Note that the
munch register controller always checks conflicts on writes to munch registers, even in the case in
which zero is being written to the munch register.

Munch registers are designed primarily to allow processors to enqueue on very small data elements
without wasting storage by having a separate flag for each element. Munch registers are
implemented as an associative memory with special control logic connected to a memory port. Any
munch register is accessible by any processor, but munch registers will be allocated by software to
processors, and that allocation will be enforced by the memory mapping hardware. There are
enough munch registers to allocate several to each processor.

Note that the executive will update the munch registers when evicting or re-loading munched
pages.

3.4.4 Hardware Queues

There exist several hardware queues which are addressed as memory locations. Special
instructions such as “QUEUE” and “DEQUEUE” manipulate the hardware queues by using read-
modify-write memory accesses. For example, when processor Pi performs a “QUEUE SKIP NOT
FULL ADR QX” instruction, in a read-modify-write cycle, it reads the state of the hardware
queue at address Q and if the queue is not full, placesX on the queue and skips to ADR. ‘If the
queue is full, then Pi places nothing on the queue (wrtting to a dummy location in the queue
controller in order to satisfy the crossbar that the read-modify-write cycle has been completed)
and does not skip.

Hardware queues allow the rapid dispatching of tasks without the necessity of using munch
registers or TEST AND SET instructions. Both FIFO and LIFO queues are being provided.

16 Processor Architecture 3.5

3.5 Status

The hardware register STATUS.LREG<O:35> contains both processor and user status. The
processor status can be accessed only in executive mode, whereas the user status can be accessed in
either e~ecutive or user mode. I .

3.5.1 Processor Status

The processor status portion of STATUS.REG is accessible only by means of the instructions
“READ FULL STATUS”, and “WRITE FULL STATUS JUMP”; these instructions read or
write the entire STATUS.REG, including both processor and user status. The processor identity
(PRC)CESSC)R_.l D<035>) is a unique number for each physical processofi it is considered part of
the processor status and is read with the instruction “READ PROC ID”. The execution of any of
these instructions in user mode causes a hard trap to the executive at trap vector address
STATUS.ACCESS.

The fields included in the processor status are as follows

SP. ID<O:4>
Stack pointer identity, This field is the address of the register used as the stack pointer in some
instructions. The stack limit is always the next contiguous register. SP refers to the stack pointer
register, and SL refers to the stack limit register.

EXEC. FILE<O1>
Executive register file. This field is the index of the register file used for operands and
add ressing in the executive address space. (See Section 3.7.2 for reserved file”indices.)

USER_ FILE<O:l>
User register file. This field is the index of the register file used for operands and addressing in
the user address space. Furthermore, when executing in the executive address space, the lowest 32
single- words of the address space refer to these registers, not to real memory locations. (See
Section 3.7.2 for reserved file indices.)

USE. SHADOW
Use shadow registers. If this bit is set, then memory addresses Oto 127 (the first 32 single-words
of the virtual address space), when mapped in the user address space, actually access memory
locations; otherwise, these memory addresses accessthe user register file.

PRJO<O:2>
Processor priority. Interrupts with priority less than or equal to this number will not interrupt the
processor.

EXEC. MODE
Executive mode. The executive is currently in execution if and only if this bit is se~ privileged
instructions may be executed without trapping.

TRACE.TRAP
Trace trap. After any instruction, perform a hard trap to the executive at trap vector address
TRACE. The effects of changing this bit do not appear until after the instruction following the
instruction which changes the status word.

3.5.2 Processor Architecture 17

3.5.2 User Status

The user status portion of STATUSXEG is accessible in either user mode or executive mode,
only by means of the instructions “READ USER STATUS”, and ‘WRITE USER STATUS
JUMP”. This portion of the STATUS.REG will also be called U$ER.STATUS-REG.

The fields included in USER-STATUS-REG are as follows

COND<04>
Arithmetic condition codes negative, zero, overflow, carry-out, and underflow. Every floating-
point and integer operation may set these condition codes. Only floating-point operations set
underflow. - -

INT.TRAP
A Ilow integer overflow traps. Integer overflow will soft trap to the
INT_OVFL.

FLOAT. TRAP
* A Ilow floating-point underflow, and overflow user traps. Floating-point

to the trap vector at address FLOAT.UNDFL. Floating-point overflow
vector at address FLOAT_OVFL.

trap vector at address

underflow will soft trap
will soft trap to the trap

PRE_LIMIT<o:5>
Prenormalization limit. If a floating-point number is prenormalized more than this amount and
PR”E_.TRAP is true, then a soft trap will occur to the trap vector at address PRE_OVFL. The
value PRE_LIMIT<O:5>=63 is reserved by the hardware to mean “never trap”.

POST.LIMIT<05>
Postnormalization limit. If a floating-point number is postnormalized more than this amount and
POST..TRAP is true, then a soft trap will occur to the trap vector at address POST_OVFL.
Th$ value POST-LIMIT< 05>=63 is reserved by the hardware to mean “never trap”.

3.6 Input/Output

The processor performs 1/0 by manipulating 1/0 registers which are logically located in the main
memory address space and physically located in the 1/0 controllers.

Each 1/0 device (both low- and high-speed) has a direct connection to its I/o registers (which
are located in one 1/0 controller). Protection of 1/0 devices from access by unauthorized
processes is accomplished by using the memory protection facilities (Section 3.3). 1/0 registers
must be marked in each page map as shared-data so that they will not be placed in the cache.

As explained in Section 3.4.1, each 1/0 controller can interrupt only one processor, and therefore
each 1/0 device can directly interrupt only one processor. However, any processor receiving an
interrupt may forward that interrupt to any other processor by means of the interprocessor
interrupt facility.

.

18 Processor Architecture 3.7

3.’7Instruction Set Definition

The processor executes instructions which are from one to three 36-bit words in length. With
certain restrictions on the addressing modes, many instruction types can operate on 9, 18, 36, or 72
bit operands, called quarter-word (qw), half-word (hw), single-word (sw), and double-word (dw),
respectively.

0

We first consider the justifications for a 36-bit word (as opposed to a 32-bit word), First, without
devastating changes, the LLL Filter instruction format would not fit into 32-bits. Furthermore, it
is important for an entire address to fit in a single word, and for there to be room left in the word

.>

to specify an index register and an indirect bit (as in the PDP- 10). Finally, a 36-bit word allows
reasonably large addresses to be packed in a half-word; a 32-bit word does not.

The disadvantages of a 36-bit word are (1) that it is incompatible with a number of machines,
and (2) that it makes addressing standard 8-bit bytes difficult. h answer to the second problem,
the LLL Filter allows quarter-word addressing (a quarter-word is a 9-bitsh considering the
exponentially decreasing cost of memory, it seems reasonable to waste the extra bit in those
applications which cannot find a use for it.

In order to allow more efficient utilization of memory, the LLL Filter includes the PDP- 11 feature
which allows most instructions to operate on multiple operand sizes; in this case the sizes are
quarter-word (9-bits), half-word (18-bits), single-word (36-bits), and double-word (72-bits). One
major problem with multiple operand types is the necessity to shift addresses; the I13M-370 and
PDP- 11 can spend a large fraction of their time shifting array indices. To overcome this
problem, the LLL Filter includes addressing modes which automatically allow an index to be
shifted left O, 1, 2, or 3 places; this feature makes it convenient for a compiler to work with arrays
composed of any of the basic operand types.

Another design goal was to simplify the task of writing a compiler that produces compact and
efficient code. A II operand addressing in the LLL Filter is completely symmetrical, that is, every
operand uses the same address computation procedure. The LLL Filter also provides the reverse
form of all non-commutative operations, and allows indexing off of local variables on the stack.
Because of the operand addressing symmetry, a compiler can perform code generation almost

* independently of deciding which variables are to be on the stack and which are to be in high-
speed registers.

The most important single design goal was to allow convenient access to a very large address
space; such an address space may allow a new architecture to survive for a long period even in
face of exponentially decreasing memory costs, thus amortizing the expensive software
development effort.

The LLL Filter architecture includes multiple-word instruction formats (one to three 36-bit
words) in order to allow sufficiently powerful instructions that the code density lost in specifying
large addresses is not important. Using the LLL Filter instruction format, the total number of bits

b needed to represent a program is in general less than the number needed to represent the same
program on the IBM-370, and approximately equal to the number needed on the PDP-10.
Section 3.7.5 gives a number of examples to substantiate this claim.

The instruction set is horizontally micro-coded in writeable control store. The instruction set ‘ ‘
definition which follows is fixed in some respects, for example, in the operand addressing modes,
but the data paths in the implementation are sufficiently general and the control store is large
enough that the instruction set can be extensively modified, either by the inclusion of new special

3.7 Processor Architecture 19

purpose instructions, or by the replacement of existing instruction such modification simply
involves writing new micro-code.

I
3:7.1 Notation and Conventions

I Bits in a word, quarter-words, and half-words are numbered from left to right (most significant
to least significant). The bits in a word are numbered from Oto 35, and subfields in a word are
referenced by the notation X<i:j>, where i is the bit number of the high-order bit in the field,
and j is the bit number of the low-order bit of the field. Using this notation, the quarter words
in ‘a word X are X<08>, X<9:17>, X< 18:26>,and XC27:35>;these quarter-words are numbered O,
1, 2, and 3, respectively.

In a number of places in the description, a field is used as a signed two’s complement number. If
F is such a field, then the notation SICNED_F (or simply S-F) refers to F considered as a two’s
complement number.

a

Some instructions operate on a pair of data objects, such as two quarter words, or two single
words. If X is the first object of such a pair, then second one is refered to as NEXT–X. X and
NEXT..X are contiguous, that is, if X and NEXT-X are addresses of objects of length L quarter
words, then NEXT.X = X + L.

3.7.2 Registers and Memory

The processor hard ware includes 4 stacks of 32 registers each, REG_FILE[03][O:31]<0:35>.

R EG..FILEIUSER-FI LE<O 1>][0:31] and REGIILEIEXEC.FILE<O 1>][0:31] will sometimes be
called USER.R[O:311 and EXEC-R[O:311, respectively. R[0311 will mean USER_R[O:3 11 if
EXEC.MODE=O, and will mean EXEC-R[031] if EXEC-MODE= 1.

Certain instructions make use of a ~hzck pointer and stack limit register, called SP and SL,
respectively. SP will mean R[SP.113], and SL will mean R[SP-ID+ 11,where SP-ID is the stack
pointer identity field in the STATUS-REG.

Registers can be addressed as memory; the lowest 32 single-word addresses of the executive
add ress space refer to EX EC-.R[O:3I), and the lowest 32 single-word addresses of the user address
space refer to USER..R[O:31I.

REG.. FILE[OI is dedicated for use by the hardware and micro-code. REG_FILE[O][03 1] will also
be called TEMP[03 1], since it contains many hardware temporary locations. In the following
sections we will refer to some registers in REG–FILEIOI by name as follows:

EXEC_SEG_.BASE.REG Executive segment base register.

USER_SEG_BASE_REG User segment base register.

REG. FILEIOI can be accessed by the executive by setting USER -FILE<O 1>=0 and referencing
the registers as memory locations in the user address space.

R EG_FILE[1:3] are not dedicated; it is intended that they will contain executive and user
registers.

20

The instruction set gives hardwired

Processor Architecture 3.7.2

functions to some registers, as shown below:

RIOI
R[l]

R[21
R[3]
R[41
R[5] ‘
R[61
R[7]
R[91;’

no short indexing allowed
no short indexing allowed
no short indexing allowed
program counter (PC)
low-order word of temporary register RTA (RTAIO])
high-order word of temporary register RTA (RTA[11)
low-order word of temporary register RTB (RTBIOI)
high-order word of temporary register RTB (RTB[11)
general purpose register

R[301 general purpose register (receives first parameter of trap)

I R[311 general purpose register (receives second parameter of trap)

I
The registers RTA and RTB can be used as a third address in some instructions, as explained in
Section 3.7.3.

The instruction set can manipulate the R registers as easily as memory locations, and special
instructions are provided for saving and restoring R ‘registers during interrupts, traps, and
subroutine calls.

Unless otherwise specified, all addresses in this description are quarter-word addresses. Directly
addressable main memory consists of 230 quarter-words which can also be accessed as half-words,
single-words, or double-words.

I
In order to facilitate computing with data of multiple precision (qw, hw, SW,and dw), instructions
are included for each precision. Some instruction types operate on only a subset of the possible
precision, for example, floating point instructions operate only on single-word and double-word

I operands. Most instructions assume that both source operands and the destination are of the
same precision, although some instructions are provided for converting from one precision to
another,

Half-word operands must lie on half-word boundaries, single-word operands on single-word
boundaries, and double-word operands on double-word boundaries. Any violation of this
boundary rule will cause a hard trap to the executive trap vector at address
BOUNDA RY_ER ROR. The registers in the register file are considered to lie on contiguous
single-word boundaries. Instructions must lie on single-word boundaries.

Note that a quarter-word add, for example, specifying R[161and R[17] as source operands and
R[18] as the destination operand, will add the high-order quarter-word of R[16] to the high-
order quarter-word of R[17], and store the quarter-word result in the high-order quarter word of
R[181. -

3.7.3 Instruction Formats

Every instruction is either one, two, or three 36-bit
includes the opcode,, and specifies part or all of the

.

words in length. The first instruction
address computation for the operands.

word
The

●

I

I

$.7.3 Processor Architecture

second and third instruction words are used for long immediate
addressing.

21

constants and for extended

Four basic instruction formats apply to the first word of an instruction, as follows

Three-Address Instruction

1
TOP T 001 0D2 I

0 9 1011 12 2324 35

Two-Address Instruction ,.

XOP OD1 0D2

0 11 12 2324 35

Skip Instruction

I
SOP SKP OD1 002

0 78 1112 23 24 35

Jump Instruction

JOP PR 001 J
b

o 10 11 12 23 24 35

TOP, XOP, SOP, and JOP are opcodes. OD 1 and 0D2 are general Operand Descriptors; they
specify general operands which can be memory locations, registers, or constants. (It should be
noted that the address computation algorithm is identical for the OD 1 and 0D2 fields.) The T
field specifies how to use the registers RTA and RTB as a third operand in the instruction. SKP
and J specify a skip distance and a jump” distance or jump address, respectively. PR specifies
whether to use J as an offset to the PC or as the descriptor of a memory address (as are OD 1 and
0D2).

The three-address instruction format allows two general memory addresses to be specified, along,
with a third operand, either RTA or RTB. This instruction format provides most of the
ad vant ages of a true three-address format (that is, the elimination of “move” instructions to make
copies of operands at the beginning of an expression), but costs only two bits in the instruction
word.

&

The two-address instruction format allows two general memory addresses to be specified, and is
primarily used in data transmission instructions (which have one source and one destination
operand).

The skip instruction format allows a forward skip of from Oto 7 words, or a backward skip of 1
to 8 words (from the location of the current instruction} it is useful for implementing small
conditional loops and IF-THEN-ELSE statements.

22 - Processor Architecture 3.7.3

A jump instruction having PR= I can jump anywhere in the range of PC+2047 to PC-2048 words
(where PC is the address of the next instruction), and in that case requires no additional word to
specify the jump address. If PR =0, J may specify any memory address, at the possible expense of
requiring an additional instruction word.

3.7.3.1 General Operand Address Specification

We first consider some notation and conventions. If X is the address of a memory location, then
M [X] will mean the contents of that location. The length of MIX I will be clear from context, it
may be either quarter-word, half-word, single-word, or double-word.

Indefinite-level indirect addressing is denoted using the character “~”, and is defined as follows
Let IA P (Indirect Address Pointer) be the contents of a register or memory location:

IAP: Format for Indirect Address Pointer
t

I REG A

0156 35

Then @IAP is an address, defined as follows

o =0 A
10 eMIAl
o #o A+R[REG]
1 #o @M[A+R[REG]]

“The evaluation of all operands (including the jump or skip destination) logically occurs before the
execution ‘oj the instruction (and before the PC is updated).

The evaluation of a general operand proceeds
sections.

3.7.3.1.1 Short-Operand Address Calculation

in two steps, which are discussed in the following

A skort operand can be one of the 32 registers R[O:311,a memory location which is addressed as a
short offset from a register, a short immediate constant, or several other entities. The name “short
operand” derives from the fact that such operands require only a short descriptor in the
instruction. An exact definition follows.

..?

1. 3.7.3.I. 1 Processor Architecture 23

‘ I
The 12-bit operand descriptor fields (OD 1 and OD2) specify short operands, and may also
specify extended indexing. They have the following format, where the bit numbers are relative to
the origin of the field:

*
OD: Format for OD 1 and 0D2

~

012~711

These fields specify extended indexing (X), indirection (I), a short offset (F), and a register name
(REG). A short operand (SO) is defined as the location specified by the fields I, F, and REG; it
is evaluated as fol;ows:

o 0-31 0
1 0-31 0

0 0-31 1
1 0-31 1

●

o 0-31 2
1 0-31 2

0 0-31 3-31
1 0-31 3-3i

Short Operand (S0)

RIFI
M[QR[F]]

S.F
o

0-31
0-31

MIRIREGI+S.F*41
M[eM[R[REGll+S_F*4]

Mode Name

register-d irect
register-indirect

short-constant (-16 to +15)
short-zero

(reserved)
(reserved)

short-indexed
short-indexed-indirect

. IF X=O, then the value of the operand described by OD is simply SO, as above.
modes in which X=1 are described in the next section:

. .

A II memory address mapping is done in the own address space when calculating short

Addressing

operands.

Short-zero mode is provided only as an escape to allow absolute memory addressing short-zero
mode with X=1 addresses memory absolutely, as explained in the next section.

It is intended that all of the simple variables (i.e. local variables on the stack and own variables)
be accessed directly in short-indexed mode. Short-indexed mode is of such utility that we call
locations accessed using this mode #$eudo-regi$ter~ (or P registers).

The only variables that can not be conveniently addressed using the short-operand addressing
modes are arrays and variables which are allocated at absolute addresses in memory. Such
locations are accessed by using extended addressing modes, as described in the next section.

24 Processor Architecture

3.7.3.1.2 Extended Addressing

Extended addressing is specified by setting !he X bit in the operand descriptor (OD 1 or OD2).
In extended addressing mode, the next word in the instruction stream is used in the operand
calculation. This word is either the second or third word of the instruction, and has one of these
formats: d

m

E: Format for fixed-base extended addressing

I 0 D N s ADDRESS

0 1 2 34 56 35

V: Format for variable-base extended addressing

I 1 D M s REG . DISPLACENENT

b 01 2345610 35

● C: Format for long constant

[
36-BIT IflMEDIATECONSTANT ,,

0 , 35

Given that the X bit is set in the opera”nddescriptor (OD 1 or 0D2), then, with one excepticm, the
additional word in the instruction is used to calculate an extended address, and is interpreted

I either as fixed-base format (E), or variable-base format (V), depending upon the value of the V

~ bit (bit 1) of the word itself. The exception noted is that if the operand descriptor specifies short-
constant, mode, then the additional word is interpreted as a long constant (C), and provides a 36-

1 bit immediate constant which is used as the operand. This addressing mode IS called long-
constant mode. In the following discussion we will ignore long-constant mode.

The first step in the extended address calculation is to calculate the base address BASE to be
used in the indexing operation. If the the additional word in the instruction ‘has fixed-base
format (E), then BASE is given by

BASE := ADDRESS

If the additional word in the instruction has variable-base format (V), then the register R[REG]
contains the base address, and DISPLACEMENT is an additional offset as follows

I BASE := RIREGI + SIGNEDDISPLACEMENT.

Let SO be the short operand specified by the operand descriptor. If the indirect bit (I) in theI

extended word is zero, then the value of the operand addressed by using extended addressing is

M[BASE + SOX2S]
.,

.

If the indirect bit is one, then the value of the operand is

M[@M[BASE+ SOX2S]]

3.7.3.1.2

It should be noted that the extended

Processor Architecture 25

addressing mode always includes an indexing operation, but
that if short-zero is the short-operand addressing mode, then S0=0, and the ad-dr&s computed
using extended addressing i: just BASE. Note also that automatic address shifting occurs in
extended addressing mode, that is, the value SO is shifted left by S bits (where S is a field in the
extended word) before being added to BASE.

The M bit facilitates communication between the executive and the user, which operate in
different address spaces, by allowing instructions executed by the executive to have either operand
mapped in either the user or the executive address space. Only the finat address mapping in the
operand calculation procedure is affected by the M bit, as follows:

~ EXEC.MODE Final Maminz Space

o, 0

0 1

1 0

1 1

User address space.

Executive address space.

(Hard trap to REF_EXEC.)

User address space.

Table 3.7.3.1.2-1
M Bit Interpretation

The duplicate bit (D) specifies that the two operands of the instruction use’ the same extended
instruction word; it simply inhibits the program counter from being incremented after the first
operand is evaluated. This feature is useful when both operands are elements of the same array,
but are accessed using different index registers.

3.7.3.2 Three-Address Instructions ~

Three-address instructions have the format

ITOP IT I 001 I 002 I

0 9 10 11 12 23 24 35

The TOP field includes the opcode and specifies the precision (qw, hw, SW, or dw) of the
operation,

* Fields OD 1 and 0D2 are general operand descriptors, as described in Section 3.7.3.1; they may
denote R registers, P registers, general memory locations, or immediate constants.

The two-bit T field specifies whether RTA or RTB is used as the third address of the
instruction, where OD 1 and 0D2 specify the other two addresses. Specifically, the operation,,
evoked by a three-address instruction is described using the names DEST, S 1, and S2, for
example, DEST+-S 10s2, or DEST+$2QS 1, where “e” means the operation evoked by the TOP
field, and S2, S 1, and DEST have meanings as shown in the following table. In this table, OP 1
means the operand described by field OD 1,and OP2 means the operand described by field 0D2:

s

26

t

Processor Architecture 3.7.3.2

~ DEST M,, g

00 OP I OP 1 OP2

01 OP 1 RTA OP2

10 RTA OP 1 OP2

. 11 RTB OP i OP2

Table 3.7.3.2-1
T Field Meaning

These addressing modes are sufficient to allow any FORTRAN assignment statement except those
d the form “AeB+C” or “A+B(I+J)*C(K+L)+D(M+ N)*E(L+P)” to be evaluated with no move
instructions to make copies of operands or to store away the result of the expression. The first
exception clearly needs a full three address instruction if it is to be evaluated in one instruction,
and the second requires a third RT register. Because of the binary nature of arithmetic operators,
all other types of expressions require only two RT registers. For example, if two of the subscripts
of the second example were the same, or if one the subscripts were a simple local variable, or were
of the form ‘*I+J+ K”, then two RT registers would be sufficient to evaluate the expression with no
move instructions. In Section 3.7.5.2 some examples are given which show code using the
RT registers.

Preliminary evidence suggests that for typical FORTRAN assignment statements, LLL Filter code
using the RTA and RTB registers contains .5 to .7 times the instructions necessary for the PDP-
10.

3.7.3.3 Two-Address Instructions

Two-address instructions have the format:

I XOP I 001 I 002 I
0 11 12 23 24 35

The XOP field includes the op-code and specifies the precision (qw, hw, SW,or dw) of the
operation.

e

Fields OD I and 0D2 are general operand descriptors, as described in Section 3.’7.3.1; they may
denote R registers, P registers, general memory locations, or immediate constants.

3.7.3.4 Processor Architecture 27

3.?.3.4 Skip Instructions

Skip instructions have the formab

&

SOP SKP 001 002

*
0 78 1112 2324 35

The SOP field includes the op-code, specifies the precision (qw, hw, SW,or dw) of the operation,
and specifies the condition on which a skip will be taken.

Fields OD 1 and 0D2 are general operand descriptors, as described in Section 3.7.3.1; they, may
denote R registers, P registers, general memory locations, or immediate constants.

i The SKP field contains a skip distance in words. If the skip condition is false at the end of the
current instruction, then the next instruction to be executed is the next sequential instruction. If

I the ‘skip condition is true, then the quarter-word address of the next instruction to be executed is
PC+4XSIGNED-SKP, where PC is the address of the current instruction.

3.7.3.5 Jump Instructions

Jump instructions have the following format:

JOP PR OD1 J

0 10 11 12 2324 35

The JOP field includes the op-code, specifies the precision (qw, hw, SW,or dw) of the operation,
and specifies the condition on which a jump will be taken.

Field OD 1 is a general operand descriptor, as described in Section 3.7.3.1; it may denote an R
register, P register, general m?mory location, or immediate constant.

o

The J field specifies a jump destination JUMPDEST. h is interpreted differently depending
upon the value of the PC-relative (PR) bit. If the PR bit is one, then JUMPDEST is
PC+4XSIGNED..J where PC is the address of the current instruction. If the PR bit is zero, then
J is taken to be a general operand descriptor (OD2), and JUMPDEST is the address of the
operand described by that operand descriptor.

“ Jumps to the user address space performed in executive mode hard trap to the executive at trap
vector address JUMP_USER; all control transfers to the user address space must be performed by
means of “TRAP EXEC”, “RETURN FULL STATUS”, and “WRITE FULL STATUS JUMP”
(which may change the mode to user, then jump).

28 Processor Architecture 3.7.4

3.7.4 Instruction Descriptions

This section describes the instruction set which is currently being micro-coded for the LLL Filter,
For the sake of clarity, we have not used a formal descriptive system, but have developed our own
set of largely intuitive descriptive mechanisms and conventions.

*

Each instruction is defined by showing the opcode string of the instruction and the operation of
the instruction, The opcode string contains terms which are separated from each other by one or
more spaces and together uniquely define the instruction. .V

This section also describes sequences of operations which are not instructions (for example, the
interrupt procedure). The opcode string column for such sequences shows a fu~ction nawze (in
italics), and the function’s formal parameters. A function defined in this way may be called from
the definition of any instruction.

Curly brackets are sometimes used in writing terms of the opcode. Several strings (sub-terms)
may be grouped in curly brackets and separated by commas, for example {QH,S,D} this notation
means that any one of the bracketed strings may be substituted in place of the brackets and
everything enclosed in the brackets.

b
The curly-bracket notation may also be used in the operation column. Let X and Y represent any
two curly -bracketted strings such that the number of sub-terms Xi of X is equal to the number of
sub-terms Yi of Y. Then if X appears in the opcode column, Y may appear in the operation
column, with the following meaning: If an opcode is constructed by choosing Xi in place of the
term X, then the operation of that opcode is formed by replacing Y by Yi. In some cases, more
than one curly -bracketted term is used in the opcode column; let W and X be two such terms. In
this case, if curly -bracketted term Y appears in the operation column, Y corresponds to only one
of W and X; that correspondence will not be formally specified, but will be obvious.

Undefined but intuitive functions appear in italics in the operation column.
s

The names OP I (OPerand l), OP2 (OPerand 2),”S1 (Source 1), S2 (Source 2), and DINT
(Destination), have the meanings described in Section 3.7.3.2.

Let X represent any of the strings OP 1, 0P2, S 1, S2, or DEST. Then ADDRESS..X means the
memory address of X. Note that registers have memory addresses.

During the execution of one instruction, “PC” will mean the address of the instruction currently in
execution, “PC_ NEXT.. INSTR” will mean the address of the next instruction in the execution
sequence, and “PC_LAST_ INSTR” will mean the address of the previous instruction in the’
execution sequence.

I The LLL Filter instruction set includes “reverse operations” for all non-commutative instructions
I with two source operands and a destination operand, that is, instructions of the form

“DEST+OP I ~ 0P2° where “e” is a non-commutative operator. A reverse operation is indicated
.,

by the inclusion of the term “v” in the opcode string. Reverse operations reverse the order of
their source operands before performing the operation. For example, “SUB V OP I,0P2° means
‘*OP14-0P2-OP l“ whereas “SUB OP 1,0P2° means “OP lyOP1-0P2”. 4.,

Reverse operations are provided in order to allow evaluating “A+B o A“ and “A+B e RTA” in
one instruction, where A and B here represent memory addresses, RTA is a special temporary
register (see Section 3.7.3.2),and “o” is a non-commutative operator.

,

3.7.4 Processor Architecture 29

Note that the opcode strings shown in the following sections are not necessarily assembler
mrzemonic$; they are simply unique names for the hardware operations. An assembler will allow
omission of some terms and simplification of others an intelligent assembler, for example, would

, infer the “V” term of the opcode string from the order of the three operands of the instruction.

3.7.4.1 Integer Instructions

Integers are represented in two’s complement notation. All integer instructions operate on data of
any integer precision, that is, quarter-word (Q), half-word (H), single-word (S), or double-word
(D). The precision of the operation is indicated by including the appropriate term (Q H, S, or D)
after the opcode. For operations which take two operands, both operands must be of the same
precision. ‘

Integer operations are done in the precision of the source operands, except for extended precision
operations (eg. “MULT L {QH,S,D}”), which are done in double precision.

3.7.4.1.1 Integer Arithmetic

TOP T 001 002

0 9 10 11 12 2324 35

Reverse operations are provided for the non-commutative operations SUB, QUO, REM, and
DIV.

Extended precision operations (eg. long multiply and long divide) are indicated by including the
term “L” (Long) in the opcode string.

,,

!’

30

OPcode String

ADD “

SUB

SUB v

MULT

MULT L

QUO

QUO V

QUO L

QUO L V

REM ,

REM v

REM L

REM L V

DIV

DIV v

DIV L

DIV L V

{QJ+SD}

{QH,S,D}

{QH,S,D]

{QH,S,D]

{QH,S,D}

{QH,S,D}

{QH,S,D)

{QH,S,D}

{QH,S,D]

{QH,S,D)

{QH,S,D)

{QH,S,D}

{QHS,D}

{QH,S,D}

{QH,S,D)

{QH,S,D}

{QH,S,D)

Processor Architecture 3.7.4.1.1

Operation

DEST4-SI+S2
0.

DEST+S1-S2

DEST(-S2-S 1 .%

DEST(-S 1*S2

(DEST,NEXTDEST)+S 1*S2

DEST+S 1/S2

DEsT+s2/s I

DEST+.(SI,NEXT.S 1)/S2

DEsT+(s2,NExT_s2)/sl

DEST+S 1 mod S2

DESTeS2 mod S 1

DEST+(S I,NEXT.S 1) mod S2

DEST+(S2,NEXT_S2) mod S 1

DEsT(-sl/s2
NEXT_DEST+S 1 mod S2

DEsT+s2/s 1
NEXT_DEST+S2 mod S 1

DEST+(S i,NEXT_S 1)/S2
NEXTDEST+(S l,NEXT.S 1) mod S2

DEsT$-(s2,NExT_s2)/sl
NEXTDEST+-(S2,NEXT_S2) mod S 1

,,

C
o

—N00400—II0x

a

.

.
—

.
.

.

32 Processor Architecture 3.7.4.2

3.7.4.2 Floating Point Instructions

Floating point precision are single-word (S), and double-word (D), whereas integer precision are
quarter-word (Q), half-word (H), single-word (S), and double-word (D). The floating point
arithmetic instructions require one floating point precision to be specified, and the floating point

!@

translation instructions require either a floating point precision and an integer precision or two
floating point precision to be specified.

Single-precision floating point numbers have the following format:
.Q

Single-Precision Floating Point Number

s EXP MANTISSAcO:26>

01 89 35

where S is the sign, EXP is an excess-128 exponent of 2, and MANTISSA is a normalized binary
fraction.

If X is a positive floating point number (single or double precision), then the floating point
number -X is represented by the two’s complement of X, so that integer comparison operations
yield the correct results for floating point operands.

Double-precision floating point numbers have the following format:

Double-precision Floating Point Number

s, EXP rlANTIssA<0:26> MANTISSA<27:G2>

01

where S,
precision

89 35. 0 35

EXP, and MANTISSA represent the sign, exponent, and’ mantissa of the doubie-
floating point number, as above.

Any floating point operation may be either floor rounded (FR), ceiling rounded (CR), or stable
rounded (SR) (see [Kahan 19731k these modes are indicated by including the appropriate
characters as a term in the opcode string. Floor rounding yields the closest floating point number
less than the true result (equivalent to truncation since the number system is two’s-complement),
ceiling rounding yields the closest floating point number greater than the true result, and stable
rounding yields the closest floating point number if that number is unique, otherwise it yields the
closest floating point number with a “O”as the least-significant bit.

8

. .

I ,

I

I

I

!

I

*

3.7.4.2.1 Processor Architecture 33

3.7.4.2.1 Floating Point Arithmetic

I TOP I T I 001 I 002 I

0 9101112 2324 35

Most floating point arithmetic instructions combine twooperands of one floating point precision,
an’d store into a destination of the same floating point precision. The operation precision is
indicated by including the appropriate character in the opcode string.

Long floating multiply (FMULT L) takes two single-word floating point numbers and multiplies
them to form a double-word floating point number. Long floating divide (FDIV L) divides a
double-word by a single-word and produces a single-word.

Reverse operations are provided for the non-commutative operations FSUB and FDIV.

As explained above, the terms “FR”, “CR”, and “SR” in the opcode string imply floor rounding
(truncation), ceiling rounding, and stable rounding, respectively. For example, “FMULT FR S“
means “multiply single-precision floating point numbers with truncation.”

OPcode String

FADtJ

FSUB

FSUB v

FMULT

FMULT L

FDIV

FDIV v

FDIV L

FDIV L V

{FR,CR,SR}

{FR,CR,SR}

{FR,CR,SR}

{FR,CR,SR}

{FR,CR,SR}

{FR,CR,SR}

{FR,CR,SR]

{FR,CR,SR]

{FR,CR,SR}

Oueration

{S,D} DEST+SI+S2

{S,D] DEST+S 1-S2

{S,D} DEST4-S2-S 1

{S,D} DEST+S 1*S2

(DEST,NEXTDEST)+S 1*S2

{S,D] DEsT(-sl/s2

{S,D} DEsT4-s2/s I

DEST+(S l,NEXT-S 1)/S2

DEsT+(s2,NExT_s2)/s 1

“34 Processor Architecture 3.7.4.2.2

3.7.4.2.2 Floating Point Translation

XOP 001 0D2
9

0 11 12 2324 35
8

The floating point translation instructions translate floating point to integer, integer to ,floating
point, and floating point to floating point, in each case performing floor rounding, ceiling .0

rounding, or stable rounding.

Floating point numbers may be of any floating point precision, that is, single-word (S), or double-
word (D), and integer numbers may be of any integer precision, that is, quarter-word (Q, half-.
word (H), single-word (S), or double-word (D). In addition to the floor-rounding (FR), ceiling-
rounding (CR), and stable-rounding (SR) terms, each floating point translation opcode string1
includes a two character precision term; the first character specifies the destination precision, and
the second character specifies the source precision. For example, “FLOAT SR SD” means
“translate with stable rounding a double-word integer to a single-word floating point number.”
For symmetry reasons, all translate instructions include rounding modes.

Opcode String Operation

FIX {FR,CR,SR} {QH,S,D]{S,D} OP i+jix(oP2)

FLOAT {FR,CR,SR} {S,D}{QH,S,D} OP l@wt(oP2)

TRANS {FR,CR,SR) S D OPi-jhzt_tra7zs(OP2)

I TRANS {FR,CR,SR} D S OP 14-@t_trans(OP2)

.

3.7.4.3 Processor Architecture 35

3.7.4.3 Arithmetic Compare Instructions

The arithmetic compare instructions compare two operands, possibly incrementing, decrementing,
or adding to the destination operand, and skip (-8 to +7 words from the location of the current
instruction), jump (anywhere), or trap (to a fixed virtual address) conditionally on the outcome of
the comparison. Throughout these sections, PC refers to the address of the current instruction.

With two exceptions, the arithmetic compare instructions assume that both operands are of single-
word length, These exceptions are “SKIP {COND] {QH,S,D]”, and “JUMP {COIVD} O
{QH,S,D}~ each allows specification of the length of the operands (Q H, S, or D). Both operands
must be of the same length. ,.

Every arithmetic compare instruction performs integer comparison. The format of floating point
numbers guarantees that integer comparison produces the correct results for floating point
operands. On the other hand, some arithmetic compare instructions add to the destination
operand, and this addition is integer addition; those particular instructions are not intended to be
used with floating point operands.

b In the instruction, definitions which follow, we have used “{COND}” in the opcode strings to
represent “{N,G,E,GE,L,NE,LE,A}”, abbreviations for the eight conditions on which an arithmetic
compare instruct ion can skip or jump; these abbreviations mean never, greater, equal, greater or
eq’ual, less, not equal, less or equal, and always, respectively. “{CO/VD}”h also used as a function
symbol (with obvious meaning) in the description column of these opcodes.

The opcode strings in these instructions may include the terms in the following table, and these
terms uniformly have the meanings shown:

O~code Term Meaning

s INC Add one before comparison.

DEC Subtract one before comparison.
●

o The comparison is with O. !’

1’

36 Processor Architecture 3.7.4.3.1

3.7.4.3.1 Arithmetic Compare and Skip
,,

[
SOP SKP 001 002

0 78 11 12 2324 35 n

The field SKP in these instructions specifies a 4-bit (signed) skip distance (in words). Depending
upon the result of the compare instruction, the next instruction to be executed is either at PC, or “4!
ai PC+4*SIGNED.SKP. -

These instructions are important in
compare instruction. The SKP field
jump instruction after the compare.

O~code String

INC SKIP {COND}

DEC SKIP {COND}

that they allow two general operands to be specified in a
of 4 bits in many cases eliminates the need for including a

Operation

OP1+OP1 + 1
if OP 1 {COND}0P2
then PC+ PC+4X61GNED.SKP

OP1+OP1 -1
if OP 1 {COND) 0P2 ,
then PC-4-PC+4*SIGNED.SKP

SKIP {COND} {QHSD} if OP 1 {COND}0P2
then PC4-PC+4@IGNED_SKP

I
.

3.7.4.3.2 Processor Architecture

1

3.7.4.3.2 Arithmetic Compare and jumpI

I ?

JOP PR 001 J1 A
I

0 1911 12 2324 35

!
In the following instruction definitions, JUMPDEST refers to the jump destination. As described
in ‘Section 3.7.3.5,JUMPDEST is computed in one of. two ways, depending upon the value of the
PC-relative flag (PR). If PR is true, then J is taken to be a signed 12-bit PC offset, and
JUMPDEST is PC+4*SIGNED.J. If PR is false, then J is taken to be a general operand
descriptor (see Section 3.7.3.1), and JUMPDEST is the result of evaluating that operand
descriptor. In either case, JUMPDEST is computed before tke execzhn of the aritAmetic-compare-
and-jump instruction.

*
Note that the 12-bit PC relative jump (PR true) is included only to increase code density. All
instructions in this section can be written with PR true or PR false; this symmetry makes the jump
length decision relatively orthogonal to other decisions in code generation.

These instructions allow only one general operand address (OD 1),since the field of the instruction
normally reserved for a second operand descriptor (OD2) instead contains the jump address.

O~code String Operation

INC JUMP {COiVD} OPI+OP1 + 1
if OP 1 {COND] NEXT.OP i
then PC+JUMPDEST

DEC JUMP {COND} oPltoPl -1
if OP 1 {COND] NEXT.OP 1
then PC+JUMPDEST

INC JUMP {COND} O OP1+OP1 + 1
if OP 1 {COND}O
then PC+JUMPDEST

DEC JUMP {CO/VD] O OPI+OPI -1
if OPl {COND}O
then PC+JUMPDEST

JUMP {COND] O {QH,S,D} if OP 1 {COND}O
then PC+JUMPDEST

JUMP PC-JUMPDEST

(note this is the same instruction
as “JUMP A O“)

38 Processor Architecture 3.7.4.3.3

3.7.4.3.3 Arithmetic Compare and Set Flag

b TOP T 001 002

. 0 9 10 11 12 2324 35 d

These instructions perform an arithmetic comparison and set the destination to all zeroes or all
ones depend ing upon the result; zeroes indicate false and ones indicate true. ,%

The source operands may be of any integer length (Q H, S, or D). The destination operand is
always a single word.

I OPcode String

I SET FLAG {COND} {QH,S,D}

Operation

DEST+S i {COND}S2

3.7.4.4 Processor Architecture 39

3,7.4.4 Logical Operations

3.7.4.4.1 Logical Testing

7

SOP SKP OD1 0D2

0 78 1112 2324 35

The logical test instructions test a group of flags (OP 1) under a mask (OP2) and conditionally
skip (-8 to +7 words from the location of the current instruction) depending upon the result. The
operands can be any integer length (Q H, S, or D), but the flags and mask must be of the same
length.

The opcode strings in the following instruction definitions contain the terms in the following
table, and these terms have the meanings shown:

CT Complement OP I before anding
(ie. use Complement with True).

z Skip if the result is Zero.

NZ Skip if the result is Non-Zero.

If OP 1 is a word of flags, and OP2 is a mask which selects a subset of the flags, then these
b instructions can be used to test various combinations of the flags, as follows

. Opcode u

AND SKIP Z Skip if no selected flag is set.
AND SKIP NZ Skip if any selected flag is set.

1’ AND CT SKIP Z Skip if all selected flags are set.
AND CT SKIP NZ Skip if not all selected flags are set.

,1 OPcode String OperationI

I AND SKIP {Z,NZ} {QH,S,D} if (OP IAOP2) {=,z}O
then PC4-PC+4X61GNED.SKP

AND CT SKIP {Z,NZ} {QH,S,D} if (not(oP 1)A0P2) {=)#}o
.then PCePC+4xSIGNED_SKP

I

I

.
Q

U
)*

.-
.-

N00
C

g
0

C
L

o1-

—

Sm
:

.
f-L

J

clz4
c1z<

nza

&Gz
0-@

z

●

*

:,
,!

3.7.4.4.3 Processor Architecture 41

I 3,7.4.4.3 Shift and Rotate
1

I ,
TOP T 001 OD2

b

0 9 10 11 12 2324 35

The shift and rotate instructions take operands which are any integer length (Q H, S, or D). The
shift count is always a single-word.

A II shift and rotate instructions are non-commutative, therefore each instruction is provided in
reverse form.

The term “A” (Arithmetic) in the opcode string implies that the operation is arithmetic, otherwise
the operation is logical.I

I C)Pcode String

SHIFT {LEFT,RIGHT} {QH,S,D]

.

SHIFT {LEFT,RIGHT] V {QH,&D}

SHIFT {LEFT,RIGHT} A {QH,S,D}

*
SHIFT {LEFT,RIGHT] A V {QH,S,D]

ROT {LEFT,RIGHT} {QH,S,D)

ROT {LEFT,RIGHT} V {QH,S,D]

Operation

DEST+-S1 logical {LEFT,RIGHT}
shifted by S2

DEST+S2 logical {LEFT,RIGHT}
shifted by S I

DESTAS 1 arithmetic {LEFT,RIGHT}
shifted by S2

DEST+S2 arithmetic {LEFT,RICHT]
shifted by S 1

DEST+S 1 rotated {LEFT,RIGHT} by S2

DEST+S2 rotated {LEFT,RIGHT} by S 1

42 Processor Architecture ,. 3.7.4.4.4

3.7.4.4.4 BIT REVERSE

BIT REVERSE

OPcode String

BIT REVERSE

I XOP I OIJ1 I 002 I
0 11 12

reverses the bits in a quarter-word,

b

3.7.4.4.5 Bit Counting

23 24 35
a

half-word, single-word, or double-word.
.4

Operation

OP l+bit_rever$e(OP2)

*

XOP 001 002
L

0 11 12 2324 3S

BIT COUNT counts the number of one bits in an operand; it is useful for counting the number
of elements in a set, where bits in a word represent elements in a set, as in common
implementations of PASCAL.

BIT FIRST finds the bit number of the first one bit of an operand; it is useful for computing the
index of. the first element of a set.

OPcode String

BIT COUNT {QH,S,D]

BIT FIRST {QH,S,D}

Operation

OP I+(number of one bits in OPZ)

OP I+(index of the first one bit in 0P2)
(The search is from the left to the right.)

,

3.7.4.4.6 Processor Architecture 43

3.7.4.4.6 BIT EXTRACT

TOP T 001 002

0 9 10 11 12 2324 35

BIT EXTRACT was suggested by Professor John McCarth~ it is particularly useful for
extracting a set of flags from a word in order to do an N-way branch on them. S 1, S2, and
DEST are assumed to be of the same length.

BIT EXTRACT is non-commutative, and is therefore provided in reverse form.

Oocode String

BIT EXTRACT {QH,S,D} ‘

BIT EXTRACT V {QH,S,D)

B

b

,

Operation

DEST is set to the value
obtained by extracting the bits
in S I that correspond to the
ones in S2, then squeezing
them to the right in DEST.

DEST is set to the value
obtained by extracting the bits
in S2 that correspond to the
ones in S 1, then squeezing
them to the right in DEST.

44

3.7.4.5 Byte Pointer

Processor Architecture ‘ 3.7.4.5

I

The byje pointer
which are called
format:

[
XOP

I
001 002 I

0 11 12 2324 35

instructions operate on bit-strings of arbitrary size (less than or equal to 36 bits),
bytes. These instructions all use a two word BYTE POINTER, which has the

BYTE POINTER

LENGTH POSITION

I REG A
I 1 I J

0156 18 26 27 35

LENGTH is the size of the byte, and POSITION is the bit-numberof the first bit in the byte.
The second word of the BYTE POINTER is a standard Indirect Address Pointer (see Section
3.7.3. i), which evaluates to the address of the word which contains the byte.

The LENGTH and POSITION fields are each 9 bits long, therefore quarter-word instructions
can be used to manipulate them. The LENGTH and POSITION fields must specify a byte
contained entirely within a word. When incrementing a BYTE POINTER, the hardware adds
LENGTH to POSITION, then, if the result is greater than 35, sets POSITION to O and
increments A. Byte-adjustment is similar.

The function byte takes an argument which is the address of a byte pointer. The value of 6yte(X)
is the bit string described by the byte pointer X.

,

Opcode String Operation

LBYTE Load BYTE
0Plebyte(OP2)

DBYTE Deposit BYTE
BYTE(OPI)+OP2

ADJ BYTEP ADJust BYTE Pointer
OP I+OP 1 byte-adjusted by 0P2

LBYTE INC Load BYTE and INCrement
0P I+BYTE(OP2)
0P2+OP2 byte-incremented

,0

DBYTE INC Deposit BYTE and INCrement
BYTE(OP I)GOP2
OP l+OP I byte-incremented

3.7.4.6 Processor Architecture 45 ,

3.7.4.6 List Manipulation

The list manipulation instructions operate on lists which have two-word list headers, where the
* first word points to the first element of the list, and the second word points to the last element of

the list. An empty list is represented by zero in the first word of the list header. These lists are
assumed to be linked together by the first word of each element; the last element contains a zero
link.

I

3.7.’4.6.1Skipping

,

O~code String

LIST POP SKIP

List Instructicms

I SOP SKP 001 I 0D2 I

0 78 11 12 23’24 35

Operation

EMP.TY ‘Remove an element from the head.
(oP2,NEXT_OP2) is the list header.
OP 1 gets the address of the first element
of the list. If the list is empty, then
the instruction skips.

if 0P2 = O
then PC+PC+4*SICNED-SKP
else begin

OP 14-0P2
0P2+M[OP21

end

LI$T POP SKIP NOT EMPTY Remove an element from the head.
(OP2,NEXT-0P2) is the list header.
OP 1 gets the address of the first element
of the list. If the list is not empty, then
the instruction skips.

if 0P2 * O
then begin

Pc+Pc+4*sIGNED_sKP
OP I+OP2
0P2+M[OP21

end

.

46 Processor

3.7.4.6.2 Non-Skipping List Instructions

XOF’ ‘ 001 002
‘

0 11 12 2324 35

O~code String Operation

LIST PUSH Add an element to the head.
(Op l,NEXT_OP 1) is the list header.
0P2 points to the element to be
added to the head of the list.

LIST APPEND

b

LIST POP TRAP

*

I

I

Architecture 3.7.4.6.2

M[OP21+OP1
if OP1 = Othen NEXT.0P1+OP2
0P14-0P2

Add an element to the tail.
(OP l,NEXT-OP 1) is the list header.
0P2 points to the element to be
added to the tail of the list.

M[OP21+0
if OP 1 = Othen 0PleOP2
NEXT.OP 1+OP2

Remove an element from the head.
(oPz,NExT_OP2) is the list header.
OP 1 gets the address of the first element
of the list. If the list is empty, then the
instruction soft traps to the trap vector
at address LIST_UNDFL.

if 0P2 = O
then soft_error(LIST_POP,PC)
else begin

OP1(-0P2
0P2+M[OP21

end

FJ

*

3.7.4.7 Processor Architecture 47

3.7.4.7 Data Transfer

*

3.7.4.7.1 Block Transfer

i

XOP 001 002

0 11 12 2324 35

The block transfer (BLT) instruction transfers a block of data from one location in memory to
another.

(OP2,NEXT.0P2) is the descriptor of the source block. This descriptor has double-word length;
the first word is the address of the block, and the second word is the length of the block in
quarter words. OP 1 is the address of the destination block.

The operands of a BLT are continuously updated so that if an interrupt occurs during a BLT,
the BLT can be restarted. It is therefore important that the values of the operands not be used to
calculate their own addresses.

O~code String O~eration

BLT {QH,s,D} BLock Transfer.

for 1+0 step {1,2,3,4}
until NEXT_OP2-{ 1,2,3,4]do
M[OPI+II+M[OP2+II

0P2(-0P2+NEXT.0P2
OP 14-OPl+NEXT-0P2
NExT_oP2+o

*

48

I 3.7.4.7.2 Move and

Processor Architecture

Exchange

3.7.4.7.2

I XOP I 001 002 I
1 I 1 J

0 11 12 2324
,.,

35 c

The “’MOV*’ instructions move an operand of any integer length (Q H, S, or D) to another
operand of any integer length. The source and destination lengths are specified by including the .

appropriate characters together in the opcode string, with the destination length preceding the
source length.

In addition, the “MOV” opcode strings may include special terms which specify the move type as
shown in the opcode descriptions below. For example, “MOV N IX” means “negate a single
precision integer and move it to a double precision integer.”

EXCH assumes that the both operands are of the same precision.

OPcode String Operation

MOV ‘

MOV S

MOV

●

{QH,S,D}{QH,S,D} 0P I+OP2

{QH,S,D}{QH,S,D] OP l+sign_e~tend(OP2)

{1,2,... ,8] for 1- I step 1 until {1,2,... ,8]
do M[ADDRESS.OP 1+1-1]+

M[ADDRESS-0P2+I-11

(Note that MOV 1 and MOV 2 are
the same as MOV S S and MOV D D.)

MOV C {QH,S,D]

MOV N {QH,S,D]

MOV M {QH,S,D}

MOV A

MOV A OP1

MOV A 0P2

MOV A REAL

EXCH {QH,W]

oPlWot(oP2)

0P14-tw0s_negative(OP2)

OP i+ab5(oP2)

OP1+ADDRESS-0P2

OP l+(address specified by OD 1
in the instruction at 0P2)

OP I+(address specified by 0D2
in the instruction at 0P2)

OP l+reaL.addre$s(ADDRESS-0P2)

<
OP 1-0P2

3,7,4.8 Processor Architecture ,. 49

,.
$.7.4.8 Stack Manipulation

[
XOP ‘ 001 002

k ‘0 11 12 23 24 35

The stack manipulation instructions conditionally hard error trap on the result of the comparison
of the stack pointer with the stack limit register. The trap location is a fixed location in virtual
space, STACK. MANIP,

The “PUSH {UP,DOWN} TRAP” instructions push an operand of integer length (Q H, S, or D)
onto a stack and trap conditionally depending upon the outcome of a comparison. Stacks may
grow either upward or downward; “PUSH UP”” pushes onto an upward-growing stack and
“PUSH DOWN” pushes onto a downward-growing stack. One operand, call it OP, is assumed to

b be a single-word stack pointer, and the stack limit is NEXT_OP. The length of the stack entry is
specified by a term in the opcode string.

,

I
I *

I

.

50 Processor Architecture 3.’?.4.8

CWcode String Operation

ADD

SUB

PUSH

PUSH

●

POP

POP

UP

DOWN

UP

DOWN

●

TRAP if (OP 1+OP2) > NEXT.OP1
then hard_error(

STACK_ADJUST$lDDRESS_OPl)
else OP1+OP 1 + OP2

TRAP if (oP1-0P2) < NEXT-OP1
then hard_error(

STACKADJUST~DDRESS_OPl)
else 0P14-OP 1- 0P2

TRAP {QH,S,D] PUSH UP and TRAP if overflow

if (OP 1+{1,2,3,4})> NEXT_OP 1
then hard _error(

STACK.ADJUST~DDRESS_OPl)
else begin

MIOPI1+-0P2
OP l+OP 1+{1,2,3,4]

end

TRAP {QH,S,D] PUSH DOWN and TRAP ,if overflow

if (OPI-{ 1,2,3,4})< NEXT_OP 1
then hard_error(,

STACKJDJUST#lDDRESS_OPl)
else begin

M[OP11+OP2
OP1(-OPI-{ 1,2,3,4]

end

{QH,S,D} POP an UPward stack.

0P2+OP2-{ 1,2,3,4}
OP1-M[OP21

{QH,S,D} POP a DOWNward stack.

0P2+OP2+{ 1,2,3,4}
0P I+M[OP2]

,
I

I

o

.

3.7.4.9 Processor Architecture 51

I

3.7.4.9 Subroutine Linkage

I The subroutine linkage mechanism is designed to allow the efficient implementation of high-level
I block structured languages such as PASCAL; it explicitly implements call-by-value and call-by-

reference.

In a block structured language, a display is often used to implement references to upper levels in
the stack. The active display is maintained in the R registers; it consists of a pointer to the stack
frame of each procedure which is at a lower lexical level than the currently active procedure.
When a procedure at a lower lexical level returns, the display registers above the level of the
called procedure must be restored to their state at the time of the call. For example, consider a
procedure CALLER on lexical level 3 which calls a procedure CALLED on lexical level 1.
CALLER first saves the old display register, DISPLAY[1], allocates a new frame on the stack,
then sets DISPLA Y[1] to point to the new frame.

●
During the execution of CALLED,

DISPLA Y[2] and above are not needed, and therefore can be used for any other purpose,
providing they are restored before CALLED exits. The per-procedure-call overhead in
maintaining the display is then one memory write to save the old display register, one register
write to set up the new display register, and one memory read to restore the old display register.
During the execution of a procedure on lexical level I, I registers are required to hold its display;
all registers above the level of the current display register can be used for local variables,
providing they are restored on return.

In the LLL Filter, an efficient mechanism is provided for passing parameters to subroutines
through the registers, rather than on the stack. The parameter instruction (PAR) is used to save
a register on the stack, and to place a parameter in that register. This operation represents
essentially the same overhead as pushing parameters on the stack, but has the advantage that it
leaves the parameters in the registers for efficiency.

To understand the (PAR) instruction, it is first necessary to understand the format of the current
stack frame. Before a procedure can be called, storage on the current stack frame must be
allocated for the callee’s parameters, the old stack frame pointer, and the return program counter,
as shown in Figure 3.7.4.9-1. It will be convenient for the caller to allocate this extra
space on its stack frame when it is first invoked, allowing enough room for the largest routine call
which it will make. The allocation will thus be made far enough in advance so that pipeline
interlocks normally will not occur (indexing off of a recently altered register will cause the pipeline
to interlock). Furthermore, allocation in advance will save the expense of performing multiple
allocations and deallocation, one pair for each call.

Figure 3.7.4.9-2 shows an example procedure call which passes three parameters A, B,
and C, where A and C are call by value, and B is call by reference. Figure 3.7.4.9-3
shows the called procedure (CALLED), which uses two local registers and allocates 10 words on its
stack. NEW.SF is the stack frame register for CALLED. The operations preformed by the
subroutine linkage instructions are shown as comments in the example. The exact definition of
the instructions is given in the sections which follow.

If the contents of a register used to pass a parameter are known to useless after the subroutine
call, then the parameter can be MOVed to the register, and the register need not be restored,
saving the overhead of one save and one restore. -

This parameter passing method requires a register for each parameter
One possible code-generation technique is to assign 8 registers to be used

passed to a procedure.
for passing parameter%

52 Processor Architecture 3.7.4.9

if a procedure has more than 8 parameters, it will push the rest of the parameters onto the stack.
Furthermore, it will be eff~cient to have two types of temporary registers for use in procedures; the

9 first type will be used to hold local variables, which are saved and restored when a procedure is
entered and exited, and the other type will never be saved, but will be used for holding temporary
results and calling bottom-level procedures (which call no other procedures),, .

.

I

“3-1m4za>

..

—

...

GNIi(n

inaK—

.

.

*
.—

—

●

*

54 Processor Architecture 3.7.4.9

PAR 1 P_REG, A !M[sp.12]+R[p_REG] .
!R[P_REG]tN[A]

PAR A 2 P_REG-1, B !M[sp.16]+R[p_REG.1]
!R[P_REG-1]-B ..,

PAR 3 P_REG-2,c !N[SP-20]+R[P_RE(j-2]
!R[p_REG.2J4q[c]

JUMP SUB NEW_SF,CALLED !M[f3p-8JtR[NEw_sF]
!M[SP-4]~PC+4
!R[NEW_SF]tSP
!PC~CALLED

MOV 3 P_REG-2,-20(sP) !R[P_REG-Z]+M[R[SPJ-20J
!R[p_REG-l]eMIR[sp]-16]
!R[p_REG]+M[R[SP]-12]

Figure 3.7.4.9-2
Example Procedure Call

CALLED : ALLOC 2 NEw_sF+l,#40 !M[SPJ*R[NEW_SF+ 1]
!M[SP+4J-R[NEW_SF+2]
!SP+SP+40

!“ROUTINE BODY”

RETURN SUB 2 NEW_SF+l,NEW_SF !RINEW_SF+lJC-M[R[NEW_SF]]
!R[NEw_sF+2J+M[R[jljEw_sF-J+4]

!PC+M[R[NEW_SF]-4]
!sp+R[NEw_sFJ
!R[NEw_sFJeM[R[NEw_sF]-fJ]

Figure 3.7.4.9-3
Example of Called Procedure

.1

I

3.’7.4.9.1 Processor Architecture 55

3.7.4.9.1 Jump to Subroutine

*

[
JOP PR 001 J

0 10 11 12 2324 35

OP 1 is the stack frame register. The JUMP SUB instruction saves on the stack the return
program counter and the old stack frame register (OP 1), and sets the new stack frame register
(OP i) equal to the stack pointer.

1

Opcode String Operation
I

I

JUMP SUB JUMP to SUBroutine

●

3.?.4.9.2

,

M[SP-81+OP 1
M[sP-41+Pc_NExT_INsTR
OP1+SP
PC+JUMPDEST

,

Subroutine Context Switching

I XOP I 001 I 002 I

0 11 12 2324 35

PAR saves the value of a register (OP 1) in one of eight parameter-save areas on the current
stack frame, and loads OP 1 with a value parameter, OP2. PAR A is identical except it loads
OP 1 with the address of OP2.

ALLOCATE is used by the called procedure to allocate OP2 words on the stack, and to save 1 to
8 registers (sequentially, starting with OP 1) at the beginning of the new stack frame.

RETURN SUB restores 1 to 8 registers (sequentially, starting with OP 1) from the beginning of
the current stack frame, restores the PC from the previous stack frame, sets the SP to the value of
the current stack frame pointer (OP2), and restores the previous stack frame pointer from the
previous stack frame.

56 Processor Architecture 3.7.4.9.2

O~code String

PARA

PAR A

ALLOCATE

●

,

I RETURN SUB

Operation

{1,2,... ,8} subroutine PA Rameter

M[SP-8-{ 1,2,... ,8]*41+OP i
0P1+OP2

{1,2,... ,8}
.@

subroutine PA Rameter Address

M[SP-8-{ 1,2,... ,8}*41+OPi
OP1+ADDRESS.0P2

{1,2,.:. ,8] ALLOCATE stack and save registers

if SP > (SL+OP2X4)
then hard-error(

STACKADJUST,SPJD*4)
else begin ,’

for 1+1 step 1 until {1,2, ... ,8]
do M[SP+IX4-4]+
MIADDRESS-OP1+I* 4-41

SP+SP+OP2
end

{0,1,2,... ,8} RETURN from SUBroutine and
restore registers.

for Ie 1 step 1 until {0,1,2,... ,8}
do M[ADDRESS.OP l+lx4-414-
M[OP2+IX4-4]

PC+ M[OP2-41
SP(-0P2
0P2~M[OP2-8]

.

.

-.

...

3.7.4.10 ‘ Processor Architecture

3,7.4 .10 Traps and Interrupts

57

This section clescribes trap instructions, soft-error traps, hard-error traps, and interrupts.

Traps and interrupts use trap vectors. A trap vector includes a new PC and possibly a status
word; those values are loaded into the processor during a trap after the previous state of the
machine has been saved.

The ttap instructions allow trapping within the current mot!? (TRAP SELF), Or trapping to tile
exectltive (TRAP EXEC.). TRAP SELF does not save the stntus register, but places the addresses
of OP 1 and 0P2 into R[~O] and R[311 (after saving them); it is intended to be used as a two-
parameter subroutine call. TRAP EXEC saves the status register and gets a new status register
from the trap vector; it also places the addresses of OP 1 anfi 0P2 in R[30] and R[311, but
without saving those registers. TRAP EXEC is intended to be used to implement monitor calls;
the executive will reserve R[30] and RISI] to receive parameters. The TRAP opcodes define the
trap’ vector addresses; each instruction type has 64 different opcodes, each of which traps to a
unique trap vectcr. The TRAP SELF trap vectors are contiguous in both the user and executive
virtual acldrc.ss spaces, starting at address TRAP.SELF..ADR, and the TRAP EXEC trap yectors
are contiguous in thp executive address space starting at address TRAP.-EXEC_ADR (they ~CJ

not exist in the user address space). Both TRAP USER and TRAP EXEC save the PC of t}te
next instruction (some types of traps save the PC of the current instruction); a return will thus not
re-execute the trap instruction.

,.

Some types of instruction execution errors (for example, integer overflow) will cause a soft error
trap. A soft errcw traps to a fixed trap vector address (which depends upon the identity of tbe
error) in the current aclclress space. A soft error trap saves the USER.STATUS,-.REG1 STER
(and sets a new USEKSTATUS.-REGISTER from the trap vector), if the trap occurs in user
mocle, but saves the S-rATUS. REGISTER (and sets a new STATUS–REGISTER from the trap
VeCkJl”), if the trap occurs in executive mode. The soft error trap routine also saves cm the stack
the PC of the next instrl!ction and one or more parameters, the nature of which is specific to the
type of error. Retu’ns from soft error traps will usually be to the next instruction, since most
instructions ‘with soft errors complete execution before trapping. Cases in which the tr;t.pping
instruction neecls to be re-exectlted are handled by passing the PC of the trapping instructiwi as a
parameter.

C)ther types of instruction execution errors (for example, writing a read-only page) will cause a
hard error trap. A hard error traps to a fixed trap vector address (which depends upon the
iclcntity of the error) in the executiz~eaddress space. Hard errors occurring in the executive trap
to ctift’erent locations than hard errors occurring in the user. A hard error trap saves one or more
parameters, the PC of the trapping instruction, and the STATUS.REG; the Save area is simply
the stack defined by” the new STATUS..REG, wl~ich is obtained from the trap vector. The

s S-l”ATUS.. REG value in the trap vector will also set the processor into executive mode. As with
soft errors, the natule and number of the parameters saved is specific to the type of error. Most
hard errors cause abortion of an instruction before any results are written; those instructioils can
be re-executed.

“rwo special hard errors may occur during traps or interrupts: page fault, and stack overflow.
Th’ese errors trap again to special hard error trail vectors, passing parameters which allow the ‘
prciper execution and return of trap which encountered the error. ~“he special hard error handler
PAGE. FA U1.T..IN-’1”RAP mus~ not encounter a page fault error, and the hard error harvdler
SP.. OVFL must not encounter a stack overflow error.

:,8 Processor Atchitecture 3.7,4.10

At) it][~:rrul][is slllli13r to 2 hard circuj bu[noparanlNcr issavcd. An interrupt is initiated w}){~i~

OIi~ of tl~c fo[lr intf:rrupt lines is asserted; if ille prictri[y of tile interrupt is hi~;her than PR1O,
ttlcn [tie Ii”l[(’f’f’[1[)[h :~cct’[lt(’(! ~nd the fJIOCCSKN, unclcr micro-code control, finds an interrupt
vector addres~ (l P~”J_.V12C.TOH) in main Mt’il)c)ry(’wliereit v/iIs storccl by the interrupting device).
‘1”’[te[~1’CKf’SWl” at the sanlc time resets the :::terrul)t bit which caused the interrupt line tu he

.

assettrcl. lniert’llpts are test-’d imn)cdiately before executiol] of an instrtlction; at that tilne PC is
.

t}lc ;{(-lcltessof tl~~?l~ext i!”lstt”!ictionto bcc~e[uicd.

‘1’hm rc[~]ri] insfrurtims handle all returns from traps or interrupts; RETURN I?ECZS,
.,v

J2E-l‘URN [J[;l;I< STA “J-US,and J?ETURN FULL STATLJS r’esto:e only registers, only [he uset-
St;+llls, al)d tl]c f[l!l status, rcsi)ectivi:ly. RETURN RJ?GS lI:IIKII::sret{lms fm~r) ‘rJ{Al’ SEI.F, ‘“
R E“]‘LJRN USER S-l”ATLJS handles rmms from soft error trap:. and RETURN FULL
S.l-A~.US ha{lc]ll:s \etLlril$ flom ~ar(i erlor ~IapS,T~.AP EY.EC, and iiltet’rupts. EOth R~’’J”’~JR~?

[JSER STATUS and RE”l’U[?N F{JLJ. STA2”US aliow 0?> 1 tct specify the number cjf icmtiotls
m be popped off (./fthe stack. ,

u(-)

ifmL-l
uE

iil-f)

.

..
..
ao

a
=

a
l

o
u
a

-
IL

L
U
W
(
J

(J
X
c
m
w

I&
l

C
n

u
xx

xc
I.L

l
‘i

O
L

Z
I-<o

cf
n

U
E

C
O

a
u

l-
L

A
-

~
>=

1
-n.
.ul

a
a

c
o

a
+

Luu
g

g

.

—
.

—

—
—

—

.

—
—

—
—

60

b

Processor

Vector for TRAP SELF from user:

I HANDLER ADDRESS I
VectorJ for TRAP SELF from executive:

I HANDLER ADDRESS 1

Vector for soft error from user:

~

Vector for soft error from executive :

HANDLER ADDRESS

NEW STATUS_REG

Vector for hard error from user or executive:

HANDLER ADDRESS FOR USER HARD ERROR

.
NEIJ STATUS_REG FOR USER HARO ERROR

I HANDLER ADDRESS FOR EXEC HARD ERROR

I NEW STATUS_REG FOR EXEC HARD ERROR

Vector for interrupi:

I HANDLER ADDRESS I

NELI STATUS_REG

3.7.4.10

.

Figure 3.7.4.10-2
Trap Vector Formats

I

3.7.4.10 Processor Architecture 61

TRAP TYPE SAVEAREAFORf’lAT RETURN TYPE
●

TRAP SELF F==l RETURN REGS

●

TRAP EXEC

USER SOFT ERROR

EXEC SOFT ERROR

1+
R [301

R[311

I PC_NEXT_INSTR I

I STATUS_REG
I

RETURN FULL STATUS

I PARAtlETER(S) I RETURN USER STATUS

PC_NEXT_INSTR

USER_STATUS_REG

I PARAMETER(S) I RETURN FULL STATUS

I PC_NEXT_INSTR I
] STATUS_REG I

RETURN FULL STATUSHARD ERROR I PARAHETER(S) I

INTERRUPT

w

l-=-l
I STATUS_REG I

RETURN FULL STATUS

Figure 9.7.4.10-3
SaveArea Formats

*

62 Processor Architecture 3.7.4.10

Trap Address

INT..OVFL
ZERO. DIVIDE
LIST..UNDFL
FLOAT. UNDFL
FLOAT_OVFL
POST..OVFL
PRE_OVFL

soft

Trap Address

TRACE
PAGE_ FAULT_IN_TRAP

SP. OVFL
PA GE. FAULT
STACK.ADJUST
EXECUTE. USER
JUMP_ USER
REF. EXEC
STATUS. ACCESS
ILLEGAL. INSTR
NOT.iNSTRUCTION
NOT_DATA
WRITE.ONLY
READ.ONLY
BOUNDARY_ERROR

Error Condition .

integer overflow
divide by zero
list underflow
floating underflow
floating overflow
postnormalization overflow
prenormalization overflow

Figure 3.7.4.10-4
Error Trap Addresses

Error Condition

trace trap
page fault during trap

SP overflow in trap
page fault
stack overflow
execute to user space from exec
jump to user space from exec
reference to exec space from user
accessing processor status by user
illegal instruction
page at PC is not instruction type
operand page is not data type
reading a write-only page
writing a read-only page
data/instruction boundary error

Parameters

Pc ~,,
Pc
Pc
Pc
Pc
Pc
Pc

Parameters

Pc
page address
trap address
trap parameter
trap address
page address
stack register adr
Pc
Pc
Pc
Pc
Pc
Pc
Pc
Pc
Pc
Pc

Figure 3.7.4.IO-5
Hard Error Trap Addresses

No0—iso—

.

in’
Q<

m
“

--e-

-—o-7

.

—
—

64 Processor Architecture 3.7.4,10.2

3.7.4 .10.2 Soft-Error Trap

Opcode String Operation
.

soft–error(TRAP_A DR,PA R) if page fault
in (M[sP],M[SP+41,M[SP+8])

then page_fault_in_trap(
TRAPJ4DR,PAR)

M[SP]+PAR
M[sP+41+Pc_NExT_INsTR
if EXEC_MODE
then M[SP+81+STATUS_REG
else M[SP+814JSER_STATUS_REG
PC+-M[TRAPADR]
SP(-SP+12
if SP > SL
then, SP_ovfl(SP_IDx4)

,,

I ,

3.7.4 .10.3 Processor Architecture 65

3.7,4 .10.3 Hard-Error Traps
I

I

O~code String Oi)eration

AanL_erw(TRAPA DR,PAR) TEMP[il+STATUS_REC
if EXEC.MODE
then begin

sTATus_REG(-M[TRAPADR+ 12J
M[SP+41ePC
PC(-M[TRAPADR+8]

end
● else begin

EXEC_MODE+ 1
sTATus_REG+M[TRA PA DR+41
M[SP+41ePC
PC+.M[TRAP_ADR]

end
M[SPJ-PAR
M[SP+81+TEMP[II
SP4-SP+12
if SP > SL
then SP_ovfl(SP_iDx4)

page_fault_in_trap(TRAPADR,PAR) TEMP[lJ+STATUSXEG
if EXEC_MODE
then begin

STATUS_REG+M[
soFT_ERRoR_PAGE_FAuLT+ 121

M[sP+8J+Pc_NExT_INsTR
pc(-M[

PAGJmAuLT_xN_TRAP+81
end

else begin
EXEC..MODE+1
STATUS_REG+M[

soFT_ERRoR_PAGE_FA uLT+41
M[sP+8J+Pc_NExT_lNsTR
pceM[

PA GE_FA ULT_IN_TRAP]
end

M[SP]eTRAP4DR
M[SP+41+PAR,
M[SP+121+TEMP[11
SP(-SP+ 16
if SP > SL
then SP_ovfl(SPlD*4)

●

66 Processor Architecture 3.7.4.10.3

b OPcode String Operation

SF_.ovfi(PAR) TEMP[ll+STATUS_REG
if EXEC.MODE
then begin

.

STATUS.REG+MISTACK.O VFL+121
M[SP+41+PC ,a
PC+M[STACK.0VFL+81

end
else begin

EXEC_MODEel
STATUS.REG+M[STA CK.0VFL+41
M[SP+41+-PC
PC+ M[STACK.OVFL]

end
MISPI+PAR
M[SP+81+TEMP[1]
SP4-SP+12

I

I

.

9

A

.

.

.

.—
—

.

.

68 Processor Architecture 3.7.4.10.5

3:7.4.10.5 Trap and Interrupt Returns

OPcode String

RETURN REGS

XOP 001 OD2

0 11 12 2324 35

Operation

Return and restore registers.
(Return from TRAP SOFT.)

PCeM[SP-12]
R[301+M[SP-8]
R[311+M[SP-41
SP+SP-12

RETURN FULL STATUS Return and restore full status.
(Return from interrupt, hard
error, or TRAP EXEC.)

PC6M[SP-81
STATUS.REG+M[SP-41
SP+SP-OP1

RETURN USER STATUS Return and restore user status.
(Return from soft error.)

.

PC+ M[SP-8J
USER.STATUS.REG+. M[SP-41
SP+SP-OP 1

●

,

3.?.4.11 “ Processor Architecture 69

,1
3.7.4.11 Cache Control

I*

I XOP 001 OD2

0 11 12 2324

The cache control instructions have been described in Section 3.1.
specified in a cache control instruction, the processor will choose to
of sweeping each location in the range.

For efficiency reasons, a special
the data cache simultaneously.

OPcode String

UPDATE DATA

.

KILL DATA

●

KILL INSTR

KILL DATA INSTR

35

If a very large sweep range is
sweep the entire cache instead

instruction is provided to sweep both the instruction cache and

Operation

Sweep through the data cache (for OP2
quarter-words), starting at virtual address
OP 1, and writing back changed locations.

Same as UPDATE DATA, except that
the words in the cache in the given
range are also invalidated, so that
future references to them will be made
to memory.

Sweep through the instruction cache
(for OP2 quarter-words), invalidating each
location starting at virtual address OP 1.

Same as KILL DATA followed
by KILL INSTR.

70 ● Processor Architecture 3.7.4.12

3.7.4.12 Page Map Cm~trol

3@7.4.12.1KILL MAP

[
XOP OD1 OD2

I

0 11 12 23 24 35

The page map ccmtrol instructions have been described in Section 3.2. KILL MAP deletes a
specific entry from both page maps. KILL MAP EXEC deletes all executive address space entries
in the page map, and KILL MAP USER deletes all user address space entries in the page map.

C&code String Operation

KILL EXEC MAP Invalidate the entry in the associative
map that corresponds to the executive
virtual address MIOP 1].

KILL USER MAP Invalidate the entry in the associative
map that corresponds to the user
virtual address MIOPII.

KILL ALL EXEC MAP Invalidate all executive address
space entries in the page map.

KILL ALL USER MAP Invalidate all user address
space entries in the page map.

‘a.

3.7.4.12.2 Processor Architecture 71}

3.7.4 .12.2 Writing Segment Base Registers

JOP “ PR OD1 J

.
0 10 11 12 23 24 35

These instructions allow writing either segment base register. A jump is included to allow writing
the executive to write its own segment base register (which affects the instruction address space for
the executive). Execution of WRITE EXEC JUMP will cause all executive address space entries
to be deleted from the page map. Execution of WRITE USER JUMP will cause all user address
space entries to be deleted from the page map.

OPcode String Ooeration

I WRITE EXEC JUMP EXEC_SEG_BASEIEG+OP 1
PC+JUMPDEST

,
I WRITE USER JUMP USER.SEG.BASEXEG+OP 1

PC+JUMPDEST

I 72 Processor Architecture
I

3.7.4.13 Status Register Control

3.7.4 .13.1 Read Status

3.7.4.13

.

XOP 001 002

0 11 12 2324 35 ~[~

The full processor status and the processor ID are accessibleonly in executive mode.

Qpcode String Ooeration

READ FULL STATUS OP1+STATUS.REG

READ USER STATUS OP l+USER_STATUSIEG

READ PROC ID OP i+PROCESSOR_ID

3.7.4 .13.2 Write Status

1 JOP IPRI 001 I J

0 10 11 12 23 24 35

The processor status register is accessible only in executive mode. A jump is provided after the
load so that the executive can load a user’s status register and jump to the user in one instruction.
The M bit cannot be set in the jump destination of these or any other jump instructions.

OPcode String O~eration

WRITE FULL STATUS JUMP STATUS_REG+OPl
PC+JUMPDEST

WRITE USER STATUS JUMP USER_STATUSIEGeOP i
PC+JUMPDEST

-r

3.7.4.14 Processor Architecture 73

3.7.4.14 Synchronization
,,

#

3.7.4.14.1 SET INTERRUPT
.

XOP 001 002
I

0 “ 11,12 2324 35

Interrupts have been described in Section 3.4.1. A processor Pi may direct an interrupt to
processor Pi by setting bit i in P~s interprocessor interrupt word using a read-modify-write
memory cycle. OP 1 and 0P2 are assumed to be single-word operands.I

I .
O~code String Operation

SET INTERRUPT (using read-modify-write cycle)
.OP leoP IVOP2

RESET INTERRUPT (using read-modify-write cycle)

I

3.7.4 .14.2 Test and

TEST AND SET

OP I:OP 1An0t(0P2) -

Set/Reset

XOP 001 002

0 11 12 23 24 35

and TEST AND RESET allow the setting and resetting of single-word flags
using a read-modify-write memory cycle.

OPcode String Operation

TEST AND SET (using read-modify-write cycle)
oPleoP2

● 0P24--I

TEST AND RESET (using read-modify-write cycle)
oPi4-oP2
0P2+0

74 Processor Architecture

3.7.4 .14.3 Munch Registers

SOP SKP 001 002

0 78 11 12 2324 35

3.7.4.14.3

Munch registers have been described in Section 3.4.3. These instructions allow a munch register
to be set if and only if there is no conflict (that is, no other munch register equ,als 0p2). If a
conflict exists, the munch register controller writes a zero into the munch register. The instruction
definitions assume that OP 1 is a munch register.

OPcode String Operation

MUNCH SKIP OK if no_conflict
then begin

OP1+OP2
PC+ PC+SIGNED.SKP

end
else OP 1+0

MUNCH SKIP NOT OK if no_conflict
then OP 1+OP2
else begin

PC(-PC+SIGNED.SKP
OP 1+0

end

,

.

3.7.4 .14.4 Processor Architecture 75

● 3.7.4,14.4 Hardware Queues

SOP SKP 001 002
b

0 78 11 12 23 24 35
,.

This instructions have been described in Section 3.4.4. The definitions assume that QUEUE.X is
a hardware queue at location ADDRESS.X. The processor uses a read-modify-write memory
cycle to both determine whether the queue is full (empty) and to enqueue (dequeue) an entry if
and only if such enqueueing (dequeueing) is possible. Both LIFO and FIFO queues are
provided; they are distinguished by their addresses,

OPcode String Operation

QUEUE SKIP FULL (using read-modify-write cycle)
if not_full
then QUEUE.OP I+OP2
else PC+PC+SIGNED.SKP

QUEUE SKIP NOT FULL (using read-modify-write cycle)
if not_full
then begin

QUEUE.0P1+OP2
PC+PC+SIGNED_SKP

end

DEQUEUE SKIP EMPTY (using read-modify-write cycle)
if not_empty ’
then OP l+QUEUE.0P2
else PC+ PC+SIGNED_SKP

DEQUEUE SKIP NOT EMPTY (using read-modify-write cycle)
if not_empty
then begin ‘

OP1+.QUEUE.0P2
PC+PC+SIGNED_SKP

end

●

,

,76 Processor Architecture 3.7.4.15

3.’7.4.15Control Store
●

XOP OD1 0D2

0 11 12 23 24 35
.

‘,

When the processor is powered-up, an LSI- 11 console machine initializes the control memories in
the processor. The following instructions allow the operating syte?n to alter the control memories. -<J

OPcode String Operation

1 WRITE ISEQ Word OP 1 in the ISEQcontrol
gets 0P2.

1 WRITE PSEQ

WRITE ESEQ

WRITE DECODE RAM

WRITE DATA CACHE LRU
.

WRITE INSTR CACHE LRU

WRITE DATA ADR TRN LRU

WRITE INSTR ADR TRN LRU

Word OP 1 in the PSEQcontrol
gets 0P2.

Word OP 1 in the ESEQcontrol
gets 0P2.

Word OP 1 in the DECODE RAM
gets 0P2.

Word OP 1 in the DATA CACHE
LRU DECODE RAM gets 0P2.

Word OP 1 in the INSTR CACHE
LRU DECODE RAM gets 0P2.

Word OP 1 in the DATA ADDRESS
TRANSLATION LRU DECODE RAM
gets 0P2.

Word OP 1 in the INSTR ADDRESS
TRANSLATION LRU DECODE RAM
gets 0P2.

3.7.4.16 Processor Architecture 77

,,

3.7.4.16 Miscellaneous ,

XOP OD1 OD2

0 11 12 2324 35

OPcode String O~eration

WAIT Wait for interrupt.

HALT Stop processor OP 1.

* START Start processor OP 1, if
halted, else does nothing.

RESET Reset 1/0 devices and switch.

EXECUTE Execute OP 1 in the address space
1“ of OP1.

AMPUTATE Lock processor OP 1 out of the switch.

1

I

I *

?8 Processor Architecture 3.7.5

3.7.!5Sample Programs

This section presents sample programs which for comparison are coded in several assembly
languages, including assembly language for the LLL Filter.

The purpose of this section is to indicate the density of compiled code for the LLL Filtert to
.

suggest the relative execution speed of the LLL Filter compared with existing machines, and to “,

clarify the LLL Filter instruction set.
.,;.J

3,7.5.1 Assembly Language Specification

This section presents a brief, informal description of the assembly language which is used for the
sample programs included in this report.

An assenlbly language statement may have five main fields, as follows

LABEL OPCODE GOTO OPERANDS COMMENTS .

The LABEL and COMMENTS fields are self-explanatory. The remaining fields are described
in the following sections.

3.7.!6.1.1OPCODE Field

The OPCODE field contains an opcode string, as described in Section 3.7.4, or an abbreviated
form of the opcode string, An opcode string may be abbreviated by the deletion of certain terms;
the assembler fills in default values for these terms. The following list shows the assembler
defau Its for opcode string terms:

4
Term Assembler Default

{S,D} s

{FR,CR,SR] SR

For example, the assembler expands the opcode string “FDIV” into “FDIV SR S“, meaning
“single-wo~d floating divide with stable rounding.”

*

3.7.5.1.2 COTO Field

The GOTO field is used for any instruction which includes
GOTO field contains the name of the destination instruction.

3.7.5.1.3 OPERANDS Field

a skip or a jump destination. The

The OPERA NDS field specifies the operands of the instruction. The operand names RTA,
RTB, PC, SP, and SL are reserved words which indicate special R registers, as shown in Section
3.7.2. The notation RX means R[X].

I

3.7.5.1.3 Processor Architecture 79
I

I Operands are written in the order shown in Table 3.7.3.2-1. In instructions having two operands,
th~ order of the operands is
written “DEST,OP 1,0P2.”

I

.!

OP 1, 0P2, In instructions having three operands, tie operands are

*

80 Processor Architecture 3.7.5.2

3.7.5.2 Use of the T Field.
$

The main use of the T format instructions is in the evaluation of expressions. The following
examples compare LLL Filter code and PDP- 10code in the evaluation of expressions.

Expression LLL Filter

A*A+B

ADD A,B

A+B+C

ADD RTA, B,C
I

MOV A, RTA
I

A+ B+C-D
.,

ADD RTA,B,C
SUB A, RTA, D

A+A*B+C*D

MULT RTA, A,B
MULT RTB, C,D
ADD A, RTA, RTB

I

A-B*(C(J)-D(K))

SUB RTA,C(J),D(K)
MULT A,RTA,B

A+B(I+J)*C(K+L)+D(PI+N)*E(L+P)

ADD RTA,I,J
4 ADD RTB,K,L

MULT RTA,B(RTA),C(RTB)
MOV R1,RTA
ADD RTA,M,N
ADD RTB,L,P
MULT RTA,D(RTA),E(RTB)
ADD A,RTA,R1

Words PDP-10 # Words ‘

1 2

MOVE RO,B .,/2
ADDM RO,A

2 3

MOVE RO,B
ADD RO,C
MOVEM RO,A

2 4

MOVE RO,B
ADD RO,C
SUB RO,D
MOVEM RO,A

3 6

MOVE RO,A
MULT RO,B
MOVE R1,C
MULT R1,D
ADD RO,R1
MOVEM RO,A

4 6

MOVE RO,J
MOVE R1,K
MOVE R2,C(RO)
SUB R2,D(RI)
MULT R2,B
MOVEM R2,A

12

MOVE
ADD
MOVE
ADD
MOVE
MULT
MOVE
ADD
MOVE
ADD
MOVE
MULT
ADD
MOVEM

14

RO,I
RO,J
R1,K
R1,L
R2,B(RO)
R2,C(R1)
RO,M
RO,N
RI,L
R1,P
R3,D(RO)
R3,E(R1)
R2, R3
R2,A

3.7.5.2 Processor Architecture ‘ 81

This last example might seem a little unlikely, but it was given because except for the statement
“A+B+C”, it is the only expression that can not be evaluated with no “MOV” instructions,
because each of the four subscripts need the RT registers, and each of the products need the RT
registers for their results. If even one of the four subscripts takes one more or one less operation,
then the expression can be evaluated with no “MOV” instructions.

3.7.5.3 Compiled Treesort Comparisons

&

This section compares compilations of the Treesort algorithm. The first ‘compilation shown is the
output of a hypothetical simple compiler compiling BLISS for the LLL Filter. The second
compilation is the output of the BLISS-10 compiler compiling BLISS for the PDP-10. The third
compilation is the output of the BLISST11 compiler compiling BLISS for the PDP.- 11. Each of
the first three compilations is shown for two cases, called case NO REGS and case REGS, which
correspond to the cases in which the variables T, J, K, and N are declared to be OWN variables
and REGISTER variables, respectively. The last compilation is the output of the FORTRAN-H
compiler compiling a FORTRAN version of the same algorithm for the IBM-370/168. This
compilation was performed using the full optimization capability of FORTRAN-H (OPT=2).

The

LLL

LLL

following table summarizes the important static parameters of the compilations.

INSTRUCTIONS # BITS DATA CACHE CYCLES

Filter (NO REGS) 33 1584 81

Filter (REGS) 33 1584 19

BLISS-10 (NO REGS) 63 2268 60

& BLISS-10 (REGS) 42 1512 19

BLISS-J 1 (NO REGS) 63 1376 63

BLISS-11 (REGS) 58 1216 31

FORTRAN-H370/168 84 2432 ‘ 51,,

82 Processor Architecture1,
,.,, ,,Jj. .,,

,/ ,’

3’.7.S.3.1 BLISS Treesort Algorithm b’~:’:, ,’

3.7.5.3.1

.,, .

This section presents the Treesor~A;lgorithm which is compiled for several machines in the
following sections. The listing shown declares T, J, K, and N to be registers.

MODULE= “.
BEGIN

REGISTER T, J,K, N;
LABEL L1 ,L2;
OWN A[61];

INCR I FROM 2 TO .N DO BEGIN
K+. I;
J+. I;
T-. A[. I];
Ll: DO BEGIN

J+. J/2;
IF .T LEQ .A[. J] THEN LEAVE Ll;
~#j]*.A[.J];

END UNT; L .J EQL 1;
A[. K]-. T;

END;

DECR I FROM .N-l TO 1 DO BEGIN
T*.A[.I+l];
:4iI+l]-.A[l];

J-z :
L2: WHILE .J LEQ .1 DO BEGIN

IF .J LSS .1 THEN BEGIN
IF (.A[.J+l] GTR .A[.J]) THENJ*.J+l;

END;
IF :A[.J] GTR .T THEN BEGIN

{4.$]-.A[.J];

J+2e:J;

END ELSE LEAVE L2;
END;
A[.K]-.T;

END;

END ELUDOM;

.

3.7.5.3.2 Processor Architecture 83

3.7.5.3.2 LLL Filter Compilation

This section presents the output of a hypothetical non-optimizing compiler compiling the above
BLISS program for the LLL Filter. Along with each assembly language instruction is shown the
number of data cache cycles required for the instruction for each of case NO REGS and case
REGS, and the length of the instruction in words, ,

The assembly language output is identical for case NO REGS and case REGS, therefore only one
listing is shown.

I L1

L2

L3

* L4

L5

L6

L7

L8

L1O

Lll

MOV 1,+2
SKIP LE L1 I,N
JUMP L4
MOV
MOV ::;
Mov T,A(I)
SHIFT RIGHT A J,#l
SKIP LE L3 T,A(J)
MOV ~(~), A(J)
Mov
SKIP NE L2 J;#l
MOV A(K), T
INC SKIP G L4 I,N
JUMP L1

DEC I,N
JUMP LE O Lll I
MOV T, A+l(I)
MOV A+l(I), A+I
MOV K,#l
MOV J,#2
SKIP LE L7 J, I
JUMP L1O
SKIP GE L8J, I
SKIP LE 18 $+~\J),A(J)
ADD
SKIP LE L1O A/J), T
Mov ~(fj;A(J)
Mov
SHIFT LEFT A J;#l
SKIP G L1O J, I
JUMP L7
MOV A(K), T
INC JUMP G O L5 I

.

TOTAL: 81

NO REGS
DATA
CACHE
CYCLES

2
2
0
3.

:“
2
3
5
3

:
3
0

3

:
4
2
2

:
2

;
3

:

;

:
2

REGS
#DATA
CACHE
CYCLES

:
0
0
0

i

:
0
0
20.

0

0
0
1

i
o
0
0
0
2
0
1

:
0
0
0

:

19

84 Processor Architecture 3.7.5.3.3

3.7.5.3.3 BLISS-10 Compilation for PDP-10

Following is the code generated by the BLISS-’1O compiler compiling ,the above BLISS program
for the PDP - 10 for the case in which T, J, K, and N are not declared to be registers.

MOVEr
MOVEM

L1 CAMLE
JRST
MOVEM
MOVEM
MOVE
MOVEM

L2 MOVE
ASH

● MOVEM
MOVE
CA?I,LE
JRST
MOVE
MOVE
MOVE
MOVEM
MOVEM
CAIE
JRST

L3 MOVE
MOVE!
MOVEM
AOJA

.

17,2
17;1
17, N
L4
17. K
17; J
4, A(17)
4.T
5;J
5,-1

:::(5)
6,T
L3
10, K
11, J
12, A(11)
12, A(10)
11, K
11,1

&K
5;T
5,A(4)
17,, L1

L4 MOVE
SOJ
MOVE
JUMPLE

L5 MOVE
FIOVEM
MOVE
MOVEM
MOVEI
MOVEM
MOVEI
MOVEM

L6 CAMGE
JRST
CAMG
JRST
MOVE
MOVE
MOVE
CAML
JRST
AOJ
MOVEM

L7 MOVE
MOVE
CAML
JRST
MOVE
MOVE
MOVEM
MOVEM
ASH
MOVEM
JRST

La MOVE
MOVE
MOVEM
SOJG

L9 .

6,N
6,0
17,6
17, L9
7, A+1(17)
7,T
10, A+1
10,A+l(17)
12,1
12, K
11,2
11, J
17, J
L8
17, J
L7

w
7,A(6)
7, A+1(5)
L7
5,0
5,J

w
6,A(5)
L8
10, K
12, A(5)
12, A(10)

::!
5,J
L6
10, K
12, T
12,A(10)
17,L5

‘la

“.

,

3.7.5.3.3 Processor Architecture 85

Following is the code generated by the BLISS-10 compiler compiling the above BLISS program
for the PDP- 10 for the case in which T, J, K, and N are declared to be registers.

MOVEI
L1 CAMLE

JRST
MOVE
MOVE
MOVE

L3 ASH
CAMG
JRST

● MOVE
MOVEM
MOVE
CAIE
JRST

L4 MOVEM
AOJA

,

I

1’

●

13.2 L2
13; 14
L2
15,13 L6
16,13
17, A(13)
16, -1
17, A(16)

17
;tA(16)
~iA\&5)

16:1
L3
17, A(15)
13, L1 Lll

L1O

MOVE
SOJ
JUMPLE
MOVE
MOVE
MOVEM
MOVEI
MOVEI
CAMLE
JRST
CAML
JRST
MOVE
CAMGE
AOJ
CAML
JRST
MOVE
MOVEM
MOVE
MOVE
ASH
MOVE
JRST
Howl
SOJG

13,14
13,0
13, L5
17, A+1(13)
6,A+1
6, A+1(13)
15,1
16,2
16,13
L1O
16,13
Lll
11, A(16)
11, A+1(16)
16,0
17, A(16)
L1O
12,A(16)
12,A(15)
15,16
1,16
1.1
16,1
L7
17,A(15)
13,L6

.

.

86 Processor Architecture 3.7.5.3,4

3.7.5.3.4 BLISS-11 Compilation for PDP-11

Following is the code generated by the BLISS-11 compiler compiling the above BLISS program
for the PDP- 11 for the case in which T, J, K, and N are not declared to be registers.

MOV
Ilov
MOV
MOV

L$5 : ::V
Mov
MOv
ASL
IIOV

L$7 : ASR
Mov
MOV
ASL
CMP
BGE
MOV
ASL
Mov
MOV
CMP
BNE

Ll: MOV
ASL
MOV
INC

L$6 : CMP
BLE

●

#T, R$O
#J, R$3
#K, R$l
ff6-(sP)

@SP, @R$l
@SP, @R$3
@SP, R$5
R$5
A(R$5) , @R$O
@R$3
@R$3 , R$2
R$2 , R$5
R$5
A(R$5) , @R$O
Ll
@Rl , R4
R$4
A(R$5), A(R$4)
R$2 , @R$l
R$2, #l
L$7
@Rl , R4
R$4
@R$o, A(R$4)
@sP
@SP, @#N
L$5

MOV
DEC
MOV

L$12: ;:V
ASL
MOV
rlov
Mov
Mov

L$14: MOV
CMP
BGT
BGE
MOV
ASL
ASL
CMP
BLE
INC

L$18: Mov
ASL
CMP
BLE
MOV
ASL
Mov
MOV
MOV

L2 : ilk
ASL
MOV
DEC

L$13: BGT

@#N, R$5
R$5
R$5 , R$2
L$13
R$2 , R$5
R$5
A+2(R$5),@R$0
@#A+2,A+2(R$5)
#l,@R$l
#2, @R$3
@R$3,R$5
R$5 , R$2
L2
L$18
R$5 , R$4
R$4
R$5
A+2(R$4),A(R$5)
L$18
@R$3
@R$3,R$5
R$5
A(R$5),@R$o
1-

R$4 -
A(R$5),A(R$4)
@R$3,@R$l
R$5,8R$3
L$14
@Rl,R4,
R$4
@R$o,A(R$4)
R$2
L$12

I

1“
I

3.7.5.3.4 ProcessorArchitecture

Following isthec odegenerated bythe BLISS-11 compiler compiling the above
forthe PDP-il forthecase inwhich T, J, K,and Naredeclared to be registers.

L$5 :

L$7 :

●

L1 :

●

L$6 :

MOV

I&
Mov
Mov
ASL
MOV
ASR
MOV
ASL
CMP
BLE
MOV
ASL
MOV
MOV
CMP
BNE
MOV
ASL
rlov
INC
CMP
BLE

H&.(sP)

@SP,R$3
R$3 , R$4
R$3 , R$l
R$ 1
A(R$1),R$5
R$4
R$4 , R$l
R$ 1
R$5,A(R$1)

k;3 , R$O
R$O
~~~$~&A(R$O)

R$4:#l
L$7
R$3 , R$l
R$ 1
~~f,A(R$l)

@sP , R$2
L$5

DEC
rlov

L$12: &
ASL
MOV
MOV
Mov
MOV

L$14: CMP
BGT
BGE
MOV
ASL
MOV
ASL
CMP
BLE
INC

L$18: MOV
ASL
CMP
BLE
MOV
ASL
MOV
Mw
MOV

L2 : %
ASL
MOV
DEC

L$13: BGT

87

BLISS program

R$2
ill;$@sP

@SP, R$2
R$2
A+2(R$2),R$5
@#A+2,A+2(R$2)
#l,R$3
#2,R$4
R$4 , @SP

1:18
R$4 , R$ 1
R$l
R$4 , R$2

~;(RSl),A(R$2)
L$18
R$4
R$4 , R$2
R$2
A(R$2),R$5

k;3 , R$ 1
R$ 1
J44~$~&A(R$l)

R$2 : R$4
L$14
R$3 , IWO
R$O
W;,A(R$O)

L$12



88 Processor Architecture 3.7.5.3.5

●

✎

!

I

‘i

I

I

3.7.5.3.5 FORTRAN-H Compilation for IBM-370/168

Following is the code generated by the FORTRAN-H compiler compiling a FORTRAN version
of the above BLISS program for the IBM-370/168 with full optimization enabled.

&

cl
C2
C4
C8

L1

L20

LZ

130

DC

::
DC

USING

L

kT “
L
L
CR

:;
ST
ST
L
L
LR

,:
SRDA

:!
LR
SLL
L
CR
BC
ST
BC
LR
SLL
ST

k:
BC
ST
L
L

kLL
, ST

kR

::
BC

XL4’1’
XL4’Z’
XL4’4’
XL4’8’

R13

7,C1
0,C8
O,QO1
9,C2
10, C4
9,11
2,L3
2,9
9,K
9,J
14, Q01
6, A(14)
8,2
10, C2
2,J
2,32
2,10

:::
5,2
11, A(5)
6,11
3,L2
8,K
15, L30
5,8
5,2
11, A(5)
8,3
3,7
7,L20
8,K
11, N
10, C4

::;
6,A(2)
O,QO1
0,10
O,QO1
9,7
15, L1

L3

L4

L50

L5

L6

L7
L70

L8

L40

L80

9,N
9,7
12, L80

::;
6, A+4(5)
3,A+4
3, A+4(5)
3,7
7iK
8;3
11, C2
11;9
12, L5
8,K
15, L40
11,9
10, L7O
3,11
3,2
2, A+4(3)
2,A(3)
12, L70
11,7
3,11
3,2
1O,A(3)
10,6
3,L8
8,K
15. L40
3,8
3,2
10, A(3)
8,11
11,1
15,150
2.K
2;2
6,A(2)

:::4
OH

b



3.7.5.4 Processor Architecture 89

3.7.5.4 Hand-Coded @icksort Comparisons

This section compares hand-coded versions of a particular rendition of the Quicksort algorithm.
This version of, the Quicksort algorithm comes from [Sedgewick 19751 pg. 329.

The following table summarizes the results of these comparisons:

# INSTRUCTIONS # BITS

LLL Filter 53 2916

PDP-10 63 2268

it is instructive to compare the inner loops of the various Quicksort programs, and these are
marked.

It should be noted that the LLL Filter code has not been highly optimized; by using absolute
addresses for arrays, most multiple-word instructions can be reduced to single-word instructions,
and furthermore, constants can be shared, eliminating duplicate versions in line.

●



1

I 90 Processor Architecture 3.7.5.4.1

3.7.5.4.1 ALGOL-W Quicksort Algorithm

This section presents in ALGOL-W the
following sections.

Certain liberties have been taken with the
assumed to be a reserved word, the operator
assumed (eg. “DEFINE N=400;”).

BEGIN DEFINE N=400; DEFINE M=9;

~EGIN INTEGER ARRAY A(O::N+l);

Quicksort algorithm which is hand-coded in the

ALGOL-W language. Specifically, “INFINITY” is
Q

N
:=:”is the exchange operator, and a macro facility is

<Q

INTEGER ARRAY STACK(O;;2*(ENTIER(LN( (N+l)/(M+2))))+l);
INTEGER P,L,R,I,J,V,T;

A(0) :=-INFINITY;
A(N+l):=INFINITY;

P:=O; L:=l; R:=N;
PART : I:=L; J:=R+l; V:=A(L);

WHILE I<J DO BEGIN
1:=1+1; WHILE A(I)<V DO 1:=1+1;
J:=J-l; WHILE A(J)>VDOJ:=J-I;
A(J) :=:A(I);
END;

A(I) :=:A(J);
A(J) :=:A(L);
IF R-J>J-L THEN GO TO RBIG;
IF J-L<=M THEN GO TO POP;
IF R-J<=M THEN GO TO LEFT;
P:=p+z;
STACK(P):=L;
STACK(P+l):=J-I ;

RIGHT: L:=J+l;
GO TO PART;

RBIG : IF R-J<=M THEN GO TO POP;
IF J-L<=M THEN GO TO RIGHT;
P:=P+2;
STACK(P):=J+l;
STACK(P+l):=R;

LEFT : R:=J-l;
GO TO PART;

POP: L:=STACK(P);
R:=STACK(P+l);
P:=P-2;
IF P>=O THEN GO TO PART;

INSERT:FOR 1:=2 UNTIL N DO
BEGIN
V:=A(I); J:=I-l;
WHILE A(J)>V DO BEGIN A(J+l):=A(J); J:=J-l; END;
A(J+l):=V;
END; ,.

END;
END.



3.7.5.4.2 ProcessorArchitecture 91
.

3.7.!5.4.’4LLL Filter Hand-Coding

This section presents a version of the above ALGOL-W program hand coded in LLL Filter
assembly language. We assumethat P, L, R, I, J, and V are storedin R registers.

1’

I

MOV A,#-INFIN L9
rlov A+N+l, #INFIN’
Ilov P,#o
Mov L,#l RT
MOV R,#N

PT MOV I,L RB
* INC

Mov t;~(L) L1O

*** INNER LOOP FOLLOWS***

L1 ADD
SKIP L

L2 SUB
SKIP G

I EXCH

I SKIP L
I

*** END OF

I

EXCH
EXCH
SUB
SUB
SKIP LE
JUMP

Lll SKIP G
JUMP

L7’ SKIP G
JUMP

1,#1 ~LF
L1 j(j\,V

PP
L2 A~J),V

A(J),A(I)
L1 I,J

IN
INNER LOOP ***

A(J),A(I) L6
:~)~A~L)

RTB:J:L L4
Lll RTA,RTB
RB
L7 RTB,#M L5

[; RTA,#M
LF L3

Mov
DEC
ADD
INC
JUMP
SKIP G
JUMP
SKIP LE
INC
MOV
ADD
DEC
JUMP
Mov
Hov
SUB
JUMP GE O
MOV
SKIP LE
JUMP
DEC
MOV
SKIP LE
MOV
SUB
SKIP G
Plov
INC SKIP G
JUMP
.

STACK+2(P),L .
STACK+3(P),J
P,#2
L,J

[;0 RTA,#M

[; RTB,#M
STACK+2(P),J
STACK+3(Pj;R
P,#2
R,J

PT
L,STACK(P)
f,j~ACK+l(P)

PT P’
1,#2

L6 I,#N
L3

$:&I)
L5 A(J),V

~~\J),A(J)
,

L4 A(J),V
A+l(J),V

L3 I,#N
L6



92 ProcessorArchitecture 3.7.5.4.3

3.7.5.4.3 PI3P-10 Hand-Coding

This section presents a version of the above ALGOL-W program hand coded by John Reiser in
PDP- 10 assembly language. We assume that P, L, R, I, J, and V are stored in registers, and we
call those registers RP, RL, RR, RI, RJ, and RV. In addition, we use the names RT 1, RT2, and
RT3 to refe~ to distinct temporary registers.

NINF -2**35

MOVE
MOVEPl
MOVMM
MOVEI

● MOVEI
MOVEI

PART MOVEI
MOVEI
MOVE

RT1, NINF
RT1, A’
RT1, A+N+l
RP, STACK-1
RL,l
RR, N
RI, (RL)
RJ,l(RR)
RV, A(RL)

*** INNER LOOP FOLLOWS***

L1 CAMLE
AOJA

L2 CAMGE
SOJA
MOVE
EXCH
MOVEM
CAILE
JRSI’

RV, A+l(RI)
RI, L1
[~, &l(RJ)

RTi, A-l(RJ)
RT1, A+l(RI)
RT1, A-l(RJ)
RJ, Z(RI)
L1

*** END OF INNER LOOP ***

MOVE
EXCH
EXCH
MOVEM
MOVEI
SUBI

I MOVEI
SUBI
,CAIGE
JRST
CAIG
JRST
CAIG
JRST

PUSH
MOVEI
HRLM

RIGHT MOVEI
JRST

RBIG CAIG
JRST
CAIG
JRST
PUSH
HRLM

LEFT MOVEI
JRST

POP TLNN
JRST
HLRZ
JRST

INSERT MOVEI
SOJLE

TOP MOVE
CAMG
JRST
MOVEI
CAMLE
AOJA
MOVSI

RT1,A-l(RJ) , HRRI-
RTI,A+l(RI) BLT
RT1,A(RL) MOVEM
RT1,A-l(RJ) BOT SOJG
RT2,(RR) OUT .
RT2,(RJ)
RT3,(RJ)
RT3,(RL)
RT3,Z(RTZ)
RBIG
RT3 , M
POP
RT2 , M
LEFT

RP, RL
RT1,-2(RJ) .Q

RT1,(RP)
RL,(RJ)
PART
RT2 , M
POP
RT3 , M
RIGHT
RP, RJ
RR,(RP)
RR,(RJ)
PART
RP,-1
INSERT
RR, RL
PART
RI,RN
RI,OUT
RV,A(RI)
RV,A+l(RI)
BOT
RJ,l(RI)
RV,A+l(RJ)
RJ,.-1
RT1,A+l(RI)
RT1,A(RI)
llllAf;::RJ)

RI;TOP



I

4. hllplementation
v

4.1 Processing Element

The major features of the processing element implementation are as follows

93

*
State-of-the-art high-speed ECL logic.

Triple micro-controllers, two for fetching instructions and operands, and one for
executing instructions.

An instruction set defined in a writeable control store which can be dynamically
mod ified to accomodate the special requirements of some codes.

Special data paths for the rapid execution of floating-point instructions.

Hamming-coded main memory to allow the use of cost-effective 4K-bit and 16K-
bit RAM chips.

The processing element is shown in Figure 2.2-1. The entire processing element, including control
store, requires approximately 4000 ECL IOK lCS. The processing element cycles in 100 nano-
seconds, with register-to-register and register-to-memory integer adds proceeding in pipeline
mode at 100 nano-seconds per instruction. With stable rounding, floating addition takes 6 cycles,
and floating multiply takes 11 cycles.With truncation, floating addition takes 5 cycles, and floating
multiply takes 10 cycles.

The processing element contains three independent micro-programmed processors, which are
designated the P-sequencer, the I-sequencer, and the E-sequencer. The P-sequencer does the
basic instruction decode which takes care of the different operand types, and register operands.
The l-sequencer calculates memory, indexed, and indirect operands, in addition to controlling
things hke cache misses and the interaction with the switch. The E-sequencer executes all of the
basic instructions, once the P and I sequencers have fetch the operands, and scheduled the write(s)
for the result(s). All three of the sequencer’s have writeable control stores, which can be
dynamically changed.

In this discussion “macro-instruction” (“macro-operation”) will mean the sequence of micro-
instructicms executed by the three sequencersto emulate a user-level instruction.

Drawings in general will be referenced by an abbreviation which is given in all capital letters.
For example the drawing for the instruction box has the abbreviation lBOX.

The drawings are the output of an advanced computer-aided design system; they are a
hicra.rcAica/ representation of the machine. In general, a single page is the definition of a truzcro-
body included in a drawing at a higher level; the definition may use macro-bodies which are
defined at a lower level. The name of a macro-body appears inside the body at the call site; it is
also the title of the body definition. Most macro-body definitions are one page, although
multiple-page definitions are allowed. Multiple-page definitions are indicated by placing a page
number (for example, “1/2”) in the title of each drawing of the definition.

Lines in the drawings represent bundles of signals. The notation X<i:j> means the bundle of
e signals X<i>, X<i+ 1>, ... , X<j>. The notation X:Y:Z means the bundle of signals (or vectors of



W Implementation 4.1

signals) X, Y, and Z, in that order. Special “merger” bodies are also used to bundle separately
named signals.

The parameter passing mechanism is similar to that of ALGOL; actual parameters may be passed
to a macro-body where it is used (paramters are bundles of signals) and the body definition may, ~
refer to those parameters by their formal names. Global signals will be declared, although no

e

declarations have yet been made on these drawings. Any macro-body can refer to global signals “‘
which are delared at a higher level.

The definitions of most low-level bodies are not shown in this report, although an appendix
..%

contains some low-level definitions,

,,.
4,1.1 IBOX/EB(JX Communication

This section describes the signals which connect the H30X and EBOX. In the logic diagrams, all
signals connecting the I BOX an EBOX are prefixed with the character “X”. Times in
parentheses indicate when”the signal is available in the sender’s reference frame.

4.1.1.1 lBOX to EBOX Signals

START ADR<O:I 1> (T40)
Starting address in the EBOX of the sequence of micro-operations which emulate the current

I
instruction.

A 0P< O:35Y(T50)
Operand to the EBOX. A OP is normally the operand described by OD 1.

B 0P< O:35>(T50)
Operand to the EBOX. B OP is normally the operand described by 0D2.

USE A OP (T50)
This signal allows the IBOX to wrap the EBOX result around into the A input. If this signal is
not set and the E130X is reading an operand from the IBOX, then the operand read into the A
input is simply the result of the last EBOX cycle.

USE B OP (T50)
This signal allows the IBOX to wrap the EBOX result around into the B input. If this signal is
not set and the EBOX is reading an operand from the IBOX, then the operand read into the B
input is simply the result of the last EBOX cycle:

BRANCH TAKEN (T50)
During conditional branch instructions, this signal indicates that the IBOX took the branch.

BRANCH COND<O:2> (T50)
During conditional branch instructions, these signals indicate the one of eight
coded in the instruction.

A OP LOW ADR<O:I> (T50)
The least-significant two bits of the A operand address. These bits are used in
half-word operations.

branch conditions

quarter-word and



4.1.1.1 Implementation 95

B OP LOW ADR<O:l> (T50)
The least-significant two bits of the B operand address. These bits are used in quarter-word and
half-word operations.

DEST LOW ADR<OIY (T50)
The least-significant two bits of the destination operand address. These bits are used in quarter-
word and half-word operations.

KILL EBOX (T50)
Stop the EBOX unconditionally.

o PAUSE EBOX (T50)
This signal can be tested by the EBOX and if asserted, will cause a soft stop to occur. ‘

4.1.1.2 E130X to IIIOX Signals

USING OPS (T4)
This signal indicates to the IBOX that if the input operands are not ready for the EBOX, then
the EBOX clock should be stopped until the input operands become ready.

C)PS TAKEN (T IO)
This signal indicates to the IBOX that the input operands have been loaded into the EBOX and
therefore the 1BOX operand registers can be reloaded.

RESULT DATA <0:35> (T20)
The result of a sequence of micro-operations.

TRAP (T20)
The instruction in execution has trapped.

RESULT (T20)
A result is available on RESULT DATA< 035s.

I DONE (T20)
! The E BOX is done with the current sequence of operations and is ready to accept a new starting

address.

INTERRUPT IBOX (T20)
Interrupt the lBOX. Several cycles,are wasted in cleaning up the IBOX to prepare for an
1BOX/EBOX dialogue.

WRONG BRANCH (T21)
The 1BOX took the wrong direction on the conditional branch currently in execution.



96 Implementation 4.1.2

4.1.2

The
with

The
The

Instruction Box

instruction box (I BOX) controls the fetching of instructions and operands, the interaction
the crossbar swjtch to read and write main memory, and all 1/0 operations.

IBOX has two caches, one for instructions and one for data, which each hold 4K words. c

main reasons for having two caches is that it doubles the cache bandwidth, and simplifies .

the scheduling of cache operations, since the instruction prefetch logic has its own dedicated ~ache.
A given word of memory can only be in one of the two caches at a time. When ever a miss
occurs in one of the caches, the other cache is checked for that word. If it is found there, then it

..4

is moved from the one cache to the other. In addition, the instruction cache does not have any
modify bits, so if a modified word is moved from the data cache to the instruction cache, then it is
also written back to main memory.

The main register stack is 128 words by 36-bits, which contains the three sets of registers for the
user, and a set of temporary registers for use by the IBOX. AII of the registers are stored three
times, which allows three different registers to be read out at the same time. During each micrca-
cycle, one register write and three reads may be done.

One of the register stacks exists in the Index Register File macro, and is used for index
operations. The other two are in the Data Cache and Register File macro, which are used for
reading register operands for instructions.

The Instruction Address Arithmetic, Instruction Address Translation, Instruction Cache, and
Instruction Buffer and Decode macros all have to do with prefetching instructions. The Index
Register File, Data Address Arithmetic, Data Address Translation, and Data Cache and Register
File macros are used for the calculation of operands. Memory Interface allows memory read and
write operations to be done to the switch. One of its more interesting features is that it puts
hamming codes on the data before it goes to the switch, and checks and corrects it when it comes
back. That way, if there is an error introduced any place between the processor and the memory,
it can be corrected if its a single error, and detected if its a double error. The EBOX Operand
Register macro holds the next pair of operands for the EBOX, and the EBOX’ Interface macro
just specifies the interconnections between the IBOX and the EBOX

.

I



.

●

IBOX CONTROL , “

1

I -ss mmTnETlc u rculEss ~Tlat

I
xnsmucTIm4 Caoc

lNSTR w XXSTX W I

P-U Wlcl Xmu rfEi

R.

4 1- (8ZG II D.UO. I

II
I I I

1

Ya173 ,
●

x 36 BIT

— Is loin , _

x
— 1=

C44 .%x= G=
TO L

I ,
I

I

I

msmucncw ffm
m 5c00E

nlsl’a an

amn a

m

. .

—. —

I

e 36 exT
Yelzl , _

— Inn SE-T
x

G-R we
DllTfi

Emx m-o
R&lSTEf?S C9w

lNTEssti I?E91T 146 L

n
E

— xNa we Wn

.

Instruction Box (IBOX)



,,

.

I

I

I

!

‘i

I

98 Implementation 4.1.2

4.1.2 Instruction Box Pipeline Timing

The IBOX Pipeline Timing shows an example of the parallelism which results in the IBOX ‘
when a, series of contiguous instructions are executed, each of which requires a single EBOX ,
execution cycle, Each box in the figure represents a 100ns event. b

The prefetch logic fetches an instruction every cycle, as long as the pipeline can use the --
instructions. The prefetch logic links at the instructions as they are decoded, and if it sees an
unconditional branch, it takes it. If it sees a conditional short PC relative branch or skip
backwards, then it assumes that it is a loop, and also jumps backwards. In all other cases, it

..4

fetches the next instruction assuming the branch is false. When the conditional branch IS
executed, if the prefetch logic went the wrong way, the pipeline if flushed, and the processor starts
fetching instructions the other direction.

Once the instruction is decoded, the next step is to fetch the P-seauence micro-instruction for the
instruction. The P-sequence m~cro-instructi& then specifies a sta;ting address in the I-sequencer,
and calculates register addresses for the register operands. Depending on the operand formats for
the specific instruction, and the specific addressing modes used, a number of P-sequence and I-
sequence micro-instructions may be done.

After an I-sequencer micro-instruction is executed, there is a two stage pipe. The first stage of
the pipe calculates addresses and does a virtual to real address translation. The virtual to real
address translation was not done in parallel with the cache read so that the page size could be
smaller than the size of the chips used to implement the cache, which are lK bit ECL RA Ms.
The second stage of the pipe can then do two register reads, or a register read and a cache read.
If a register is read as a memory location, then the, hardware automatically reads the correct
register.

After the operands of the instruction are read, then a half cycle is allowed for the operands to get
to the EBOX. The EBOX then executes the instruction taking some number of cycles, and writes
the result(s) back. The addresses of the result(s) have already been scheduled at this time, and
hardware logic actually does the writes. If a write conflicts with what the IBOX wants to do
during a given cycle (i.e. the IBOX wants to do a cache read, and the EBOX wants to do a cache
write), then the clock for the IBOX is stoped for a cycle, and the write occurs. For most
addressing modes, the IBOX does not need to write into the cache or the general register file, so
very few write conflicts should occur.

●

There is a set of comparators which take care of the cases where a result of one instruction is used
in one of the next two instructions, which causes the appropriate data to bypass the cache or
register file, with no loss in time. The only place where execution time is lost is where an
instruction tries to index off of a rescently generated result, in which case up to three cycles may
be lost. Because of this, it is 2 cycles faster to index off a local variable on your stack, than it is to
load it into a register and then index off of it once.



—— — —. —

FIRST INSTRUCTION

~ :=;g-”
FrTcn 1 se

Em xssmTI

I
rmonEss caoE*

ISUTE &ssil.1
FE-F(M P Sfe nlmOINsnR

FRCS! cm ‘= ‘m Wxcm]msm * REIm
au TWSTI Xc FtEG1ST6f

~

Fmn FIRST lslsTR

fSSD TF5WSSLRTICS4 WERum Elms
INTO ~ OR

I= i?zGJsTm =GISWR FILE
i

Ye TIO T213 Ku 740 ‘ma 1- Va

SECOND INSTRUCTION

lMCR=NT* F&x40lam.
TlzacarlmK FIKM Cm 0-s msm

Fctol x Sm
FETOi P SCe

I

nlcRolmsTR

I

-ss c@Q=r80

nxcamssnl nso CaIlwl WS1lWK1 K RCG1STER

lM~ ESGXSID?
mso TwsssLaT1cU4 ~ -

I

T* T10 T20 ns

THIRD INSTRUCTION

FEr04 x em
nKRolt&sTR
Qto REm

lMIES REGZSICR

14S

m

UMTE SEXUT
FROll Trllm msnl

ZNm ckacnE OR
ITEGJSTER FLC

I I I

I
Exmrrlon CULE
OF WIRG 1N6TR !

FOURTH INSTRUCTION

FETCM 1 SEO
1W3?EI’KNT m RfJsl rt6TR “~~gy I .-%lC Cacm Iwcl

WITE EfSIKT

OECWE lMSTR
rETOi P Sco

TR6H9JITE PC FRCSI C- n1CR01N6TR
RCGISTEIT

FRW! rOIS?Tli lMSTRi

,tsXx RWIS- j - ‘—”m —-
lMTO - m

I REGISTER FILE

TO TIO Tas m 14s

IEXECU71w cvaE
W FSU?THlmTR

I

IBOX Pipeline Timing (IBOXT)



, 1’00 Implementation 4.1.2.,1

4.1.2.1 Index Register File

The index register file is used for read ing,registers which are used in address arithmetic, such as
in index operations and register indirection. The multiplexer is”used to determine the source of
the register address, and the comparator is used to detect that the next cycle is writing into the
register being read, tu allow the appropriate data to bypass the index register file, saving a cycle.,

The IREGM drawing shows how the 36B x 128W register file is implemented.

.,

●



—— .
—— .

u DSMV*%>
lmx SsX

L++

x

Dx m e

x

‘lW
xc

~G SET@J:t>:F121 REG R a $i<@:*>
. ●

0

ffG S~40:1>:UI I?EG Wl?@I:4>
1

F12! INti WG (OR WA. *P> I
N-XT u H I?ocx Rflj

INMx RFG a0?<2>
]Nnfx RIG 130?<3>
1*CX Rl& F?w<+>

lMXX RCG am<s>
S** me

lMXX REG M$?.6>
x

liWX WT uST?W WE

ITV L

Index Register File (IREGF) ●



—
— — ●

✍�

●

fM<0,6>

w<a:6>

F 6SWU3T
SuEN

L7J
x

n LE Cs

1 T I

I I I I I
I

ux u.x

R WCS e IJE (3

36B X i28W IBOX REG (IRECM) .



4.1.2.2 Implementation 103

4.1.2.2 Instruction Address Arithmetic

The Instruction Address Arithmetic logic calculatesthe address of the next instruction to be
fetched if it PC+4 (next wor~), or the destination of a PC relative skip or short Jump. In all
other cases, the Data Address Arithmetic logic is used to calculate the address of the next
instruction.

The 28B x 128W RAM is used to rememberthe PC of all instructionsin the pipe, in case one of
them gets an error, or the pipeline getsflushed for somereason.

●

●

,

.



(vtiavi)vwgvlvssa~ppvuo!mmuI

1al.

Ixl
<ea3>3n3m2.4.1tabletd–

mm
N9Lxz

-

I_&

1●IL

I

I
‘--f-l

‘Y

.
——



Ino

.
c
o

INA-4.

.
.



.m I1

x

wza

r

.

SuaaurnslH9L&laoe<?1

IIII

1
1I

MW93
1

“x

Iawuw
1

J4WM34
1

N011Yn13a
r—

em93M
>U3U93ac1

I

X*I

*



(Ztivtiav)2/2wwwSSaJPPV~l~a

,“
w

11

x

9ml19<1et1
93?!

<e>u

1191

.+,0>13S+300s1C,?te.tI

I

.

●



.
g.
o‘3

..

●

●

—
—

—



————

●

..



110 Implementation 4.1.2.3.2

4.1.2.3.2 Data Address Arithmetic Control

The .llata Address Arithmetic Control causes the write data (WDATA) bus to be selected in the
Data Address Arithmetic logic, if the word being read out of the Index Register File is being
written the next cycle.

t

.X1

*

I
1’

.,

I



.

~.

m

x
<t>t$mlmmQ319<1011

93U
,t>v93-I00s1.?[3

1181

11

I

—



..
..

,.

.!N..

●

.
●

.
—

.



,

1La

El

mm.

19U

$+1

I

C*l

1

33sMm9.X33US

<Z,e>wwH11?[,

00I
sJm.

X3

x
x

93N
<91:e>1a

W?lXFEZ
1109C

<x:exm

—————
—

●



9

i 14 Implementation

4.1.2.4 Instruction and Data AddressTranslation

The Instruction Address Translation and Data Address Translation logic translates virtual
addresses for the instruction and data caches into physical addresses. The address translation is
done by a lookup in a small (et associative cache, which has 64 words, and a set size of 4.

.
Because of the very large address space (30-bits), this method was prefered to the more $

conventional method of using a direct mapping cache for the address translation. Since different
,.

data is stored in the two address translation caches, up to 128 different page translations can be
kept in the processor.

.3

.

●



.

(N.LWIV1)Uo!misue.uSswpvuo!m.wq

W-1~
x

lacmSwau81%1I.zf

*S:e>walwol
wHsn—

I“-’4(’I*LSlsmf.xf

3aw)*11—
9s-

1!ss3SmmaMliWwo1alssu*f
1sL1am-lMa-alssu*f

93M%30s1-I

ma1.

lMnso3nulm11snsis5mSs3mw

<9c:exmlL

—
_-—.



—
●

�✎

T fKG<e:sB
UlLw6ms —TIcM L&U LXaLTTLOI.

T Tem
I

~- ‘“ I
-. m x Wsmtul

— -HnsET - MIT

1* D LPmwrE 9T LF?IJ81TS L
o LJPrnaTEm LmJ 81-L* ‘TFLf@L9Il]ss

140 0 I.mm m MU LKCW - L
o LOf@aTLRU~UXCW

D UA<e:s> J w -ILrrscl

124 0 T- u -u
--

1’ ..

Data Address. Translatiti (DADRTN)

●

1
x .’ .



4.1.2.4.1 Implementation 117

4.1.2.4.1 Address Translation Cache

The Address Translation Cache k a standard set associative cache with a set size of 4, and with
64 total entries. The input to the cache is the bus VA<035>, where VA<6:35> contains’ the
address to be translated. The way the cache operates is to look up four words based on
VA <2225>, and to compare the address stored there to VAZ62 1>. If one of those words match,
then the
required

physical addre& stored in that location is read out. Otherwise, the address translation
is not stored in the cache,and a micro-interrupt occurs.

.

*

i“ *

1



●

—
—— —.

,+-
2*xltu’

INEX RfG<l?:3C>
lf31+C$! T

[

x

1* x It.u
I* c1 w Cs

(E 1es46a T

x

e w Cs

CNO Fw

TMuS u

W<6: 2,> WI.22:2- I

TW+M2 MIT =T<e>

I

Tf?lWS )411 SCT<l>

TRIWc HIT SCT<2>

cm rcla

w+. Q c #3EsK.c
PA’ & Rmcl mY

//” /p’ 16

/ ‘ k .4

m< n E=WTE O&Y

W.?: F.> UR.2:Z%> 062<0 ,1> m<e:l>

. /
TRWS GU? L

~ z,;?
1

W<2:?S>

W’?6:35> m[26,35)

Address Translation Cache (A DRTRN)
s



4 1.2 4.2 Implementation 119 
. 

4.1.2.4.2 Address Translation LRU Control 

The Address Translation LRU Control keeps track of the least rescently used word in each set in 
the Address Translation Cache, so that when an element needs to be replaced in the cache, that 
word can be the one The way this is implemented is as follows For each set in the cache, there 
are five bits stored, two of which specify the most rescently used word, two which give the least 
rescentty used word, and one which tells the order of the other two words In order to update 
these five bits on a reference to the cache then, these five blts and two bits which tell which word 
is currently being referenced are fed into the address lines of a RAM which is programmed to 
give the new five bits for this set. It should be noted that the two bits which give the most 
rescently referenced word are just the current word being referenced, so they do not need to be 
generated by the RAM. 



.———.-
—

●

.

z
(!40 LRU 13TTS<@J: 1> 3LEIJ W. la#t<o:i>

ao LRU ssTs<e,4>

m x I.?al

T F!SG<33:36>
m

1Me6 , WU LRIJ BITS< 2.:2> H

x

@l) LTW B1TS<9:4> H.4==LJ
x

4 BIT
LATCH e w Cs I

Ua<,?2, a$> 10176
. lX1

Cs

Y
d L 744

LIPIBTE 13T LXU BITS L

I
* 017
L.9T0i

TWWS HIT scr.e> 10176
TRW HIT SCT<I>
lRIIJ+S HIT SC,<?> xl o

TRWS )411 sl’3>
a

?

1 elT
LJLTOi
10176

~ lXT o

Icxl

74; LTMWIS )+17 sCT<3>

H i? en
IAlcn
30176

IXT
-t+l REf10 6ECT10We: 3>

TWNS HIT ~(1>

!lelemTRW?, )+11 SfT’3> C!(

/ x o

)--LL -+

x

T- L

I
o smm

T44+6 L o x

7/Cs r’L
d

..=

—
1

KS;L

Address Translation LRU control (ATLRU)



*

4.1.2.5 121

4.1.2.!5 Instruction Cache Memory

The Instruction Cache Memory and the Data Cache Memory are both basically the same, and are
conventional set associative cache organizations. ‘They each hold 4K %-bit words, and have a set
size of 4. The instruction cache does not have a modify bit, so writes to it must also go to
memory. The data cache has a modify bit for every four words, and words are always transfered
between the cachesand main memory in groupsof 4.

.

.

1“ ●



. —. —.

~ z
N

- I-P lMslR c cmTa P Em

x

I I

●
IXSTR c m P m SfT<e>

I J

/

I

x ml lxSTR C HIT SCT,~

euwf

w a
( {

r
I

I I I
I aP Em? I I I IWHW c Cwt.! P ERU m<, >

<

Dr lXSTR amE “
-Y

w — t-i”
I

t I

1 I II

+= - ‘
aP ERR XNSTR c mR P cm? m<z>

01 Ixsfl? Cflc#E ~

e

I x “Tl I I I I NSTR c MIT SEI <e>

em !

e a II
1---1seam ZNSTR C w P ERQ SCT<3>

I
91N.1),~,

L
.x Hrl IN5TR c H17 sm.3,

em

— 1 *e374
16 INSTR C nlSS EL(KX rCM7<e,,6>

36 MT

]NSTR Fwe:x.,
REG

x
C* SNSTR Pa<e, Y6>

I

XNSTR C LMJ WT ~<e:,>

Instruction Cache Memory (ICACHE)

?. . .



4.1,2.5. I Implementation 123
6

4.!.2.5.1 Instruction Cache Memory Module

The Instruction Cache Memory Module implementsone set of the instruction cache. Since words
are always transfered between the cache and memoryfour at a time (called a line), the high order
address bits only need be stored in the cachefor every fourth word. The two 8B x 256W RA Ms
are used to store the high order 16 bits of the physical addressfor a line. The 18B x 1K and
19B x 1K RAMs store the data words plus parity. The lB x 256W RAM stores the parity bit
for the physical addresses. ,.”

.

*

(

I

i’ *

●



..
.

*“

I

c3X
< LIH>

<9
-

1189tw—

I

II
tw92xeL

II

,

1’{~:el>ld
I

<<a:e>ld

.



1

I 4.1.2.5.2 Implementation 125

1

4.!.2.5.2 Instruction Cache Control

The Instruction Cache Control assertsthe signal HOLD INSTR C MISS If an instruction cache
miss occurs.It also selectswhich set is to be written into on a cachemiss.



.

136 CLJCCTW<LI,1>
2 MT 10F4

e 2 BIT
lelm LESG Ccc am?

T ~ 10176 ~ 16=
s a ltLSTR C M m<e:3>

x x x
— 3*

cm -cm

00

J36CUm SRCSCL T-

I I I 1

T RE<e, S>
-LRUCOWRC4

T REG
Imm L?EG<*,36>

. XNEx rLc15
c+e :NSTR twie: S,

c am x LRuscTtul
lUSTR c MIT sET*, y,

c Mm Sm - tin
160 lJuM1a INSTR c LmJ EUTS L

~ wm c IJal BITS - nm2
I* L- INSTR c LeU DCmDE RfMIL

o LIMO C I.RU OCCOOE ~

0(
.-

0 1N27R c HIT L
c’ Iwslw c nlss

I
L

I

I I I
1

9 BXT
RcG

146 lNSTR C ~MT104 L x

ac

145 lNsTR C C1.E~ HIID I’USS L
o

T62 L

1 --’

Instruction Cache Control (ICACC)
.



4.1.2.5.2.1 Implementation 127

4.1.2.5.2.1 Cache LRU Control

The Cache LRU Control is almost identical to the Address Translation LRU Control, with the
only mail difference being that it has to keep track of 1024 lines, instead bf 64.

●

i’ *

b

●



.,

03
●OJ

<1:--USllH3

<I:awwml.ilsml<I,e>suemla-lo5

9:1

v
m

1

x

L9411B11
9=

110aH

r-%x 19ttet1
!334

lla1

I

{I

w

“x

19410;1
93M

<tc:,e>~,

110s

lW300>30ml313u01

eI

——
●



●

4.1.2.6 Implementation 129

4.1.2.6 Data Cache and Register File

The Data Cache and Register File containsa cachememoryfor data, plus two register files, which
both contain the four processorregister sets. The outputs OUT A and OUT B are perfectly
symmetrical, and both can read a cache location, a register, or an immediate constant. If a
register is addressed as memory, then if the word was being read out of OUT A, the one register
file will be used to read the register, otherwise the other “register file will be used.

The EBOX has two operand registers,OP A and OP B. When the I-sequencer is calculating an
operand to be put in OP A, it normally usesOUT A, and if it is calculating an operand for OP
B, it used OUT B. The P-sequencer can then read a register operand on the other output,
allowjng two operands to be read per micro-cycle,with no conflict in the data paths being used.

*



●

✼

.-

Iux. cI cecnE mss

L* 11’rs-cl Clnw’i

F5c stm. e:t>:ssc f7cG - we:4,
EG - 143 s

M S6L rl’e:l> C.43E CM(I xCGXSTCR
6 Flu COWIXOL C4S SEG

WXTU~OVTRFGa
mIcuW Wa(l cow

L.9STM~WTKGR
- In Cci’w

x
LAST CG+W

L

I

I
I

I

I 1
SEG SET<O,l>:S.X RCG KS? 0’0,4>

.KG Wls 742 s

CUT SEL 8c0:1> CRC= FuD FmG1sTcs
s FIIJE CC+41ROL C4S SEG

KX1UCIWGU7RCGB
w COW

E

XXT cm

LW1 U (7P CUT RCG B
UCCW= x LAST COW

IUC6 scT<e:1>:m<21 :26> ~

L--$---l

WI
I

14; L
I

I I I

lX1

c44 c ms<e:~>

!

I

D-
●

36 ~T
1 101-

T
UJT ‘1+’0, 36>

2X

‘s-

1
C49GillKGQDS a’e:6>

[ I I

3GBX1’2U4
ZROX==G

— e

D1 m
36 MT

1 10174

x T .
OUT B<B:36>

2X

RIlbs31.Es

Ts s-63

I C49OIJT SEG ~ B<9:6>

*xTucnPOln @

Data Cache and Register File (CRFILE)
*



4.1.2.6.1 Implementation 131

4,.1.2.6.1 Cache and Register File Control

There are two Cache and Register File Controls, one for OUT A and one for OUT B. They
control the output multiplexer to take care of when a register is read as a memory l~ation, and
which write compares happen the result of one instruction is used by one of the following
instructions, which causethe W DATA bus to be selectedon the output.

.

l“ ,

!



●

.

FKXT u cm CAcW

*eim
T

Mlcw

n RcJu.e:6>

* BIT

7 BIT lmlm =6

REG T - ~ 90176 ,

KG W8T<e:6> ~ 19176 , , x x

x
1*

Cx

m

1 s

/ 1
/C* S<m

/

/

.? BIT
e

1 811

S<e:j> ~ 10976 , me s<e:l>
=6 1

~ *e*76 , c4e *<e:*>

x
c4e s<!>

x /

Cx
—

a

T- Sac> S’1> EsrW FRont
T-

ea -
el RCGISTER
se CW5T#+l

4tem69
KG

x

Cache and Register File Control (CRFCTL)



.

.

4.1.2.6.$ Implementation 133

i
4.1.2.6.!2Data Cache Memory:,,

The Data Cache Memory is very similar to the instruction cache,with the main difference being
that a bit is stored for each line in the cache,indicating that it has been written into.

I

I

●



.
— —

‘ 33 BIT *17$

I-P
C06Ttl PERR

x

t {

n
Qa

L-..

PJ “<E:ZS>
1.

14s SC_f C !100IFY BIT
1

I

-1
rnIccIx mo

I c ntmI FIECJ SETte>

nasl

m w w m

-1
SETmox no-l I I c 1100IFIED ScT<l>

ems?

SRlm$w

aPETJR cWsTPsRsm .=

- 01 -Te CROE ~
fEncuY

- bE -E HIT c I+lT H<28

- mmox llm c nlxll FIER m<2>

BWS?

fiPETln

- 01 mm cao9J _
tsWOIY

- WE -E HIT c ml ? SST <.

— SETmclx Iu10 C MOIFIW SET.3>

FIwiw: 33? I 1111
EsOx u rwRc16:aJ

M
I 17 017 PfsllTi II

I
,

16 ml 16 011

— 1 19174
REG

T ~ 3SI176 , c HISS R Ocx -.0: 1s>

2X x

0(
>

I

I
z M

T 1 c msee:x>

ECIOX u mswe: 26> n

& ~L ...... ;.:::’:‘L:3



1

a43dtl1’L n99?xa1

H

r
#zJ--

I

p_-

1
I

I

T
I+

I

I

1

1e+l
I

I

/

oI
<L:e>w/

<6:fd>tQI

e
SJmw

x

.LI

-
Iw%?xm

<<1-w>Cm1\-eIt?d—
Uw

xlxml

II

<9C:S1>1O

A.

(41:0>10

s331u

a3u1
x

L1-
mQJ

H9s?xml
au13s

.

●

.



..
— — —

%

,

Jmm WG<e:X>
lmcx RCG

s $IO?.9:%>
‘ c en?

c
x

HIT ~<e:3>
LmJecT)ul

c uri sm
16(4 WOmh c LRU ax m

13ww? MIT
L

o mum c Lal mm
J49 L(WJ c UaJ rrcom RW 1.

- nms

o LmD c LRu Ecccc m

“-PW
I a( I

o c MIT ~

$ c Iuss L

-1 I
I I ..

146 c CLCIV? HUD n] Ss

-1 L

T62 L I

.
Data Cache Control (DCACC)

.,

.!)
.’ .



uaa

—
.

.

4

.
.

*

—
-..

—
—



.

.
(@
co

n“1RSTSUCT1CS4
faEiEcnNmOL

x

tw

E sTtWO

—cam

F Caxmf

1 1 I 1

3 alT 3 em 3 BIT 3 t3ZT “.
REG REG 3 SIT

=G =G SEG
~ 10176 , _ ~ *sJ%% , , 10376 , _ ~ 19s76 ~ _ ~ X*176 ~ x~ auMet2*

x x x x x

0( 0( u u a

I
T&s h r, T&

r=~ WSW INS’S L
o 1019s4!

yl e L
o x

H mm JWSTR

n slaP lNSTR I

I
L

‘“ —, !

Instruction Buffer and Decode 1/2 (INBD 1)
●

. .



at m
.

.——

*



‘+9

.!

.

—
—

*

.



.—
— —. — .— —.

_
To-1 L

1!?<3!>
II?< 3.>
II?, 33>
II/. :*>
Ii?< %>

Instruction

I sTnRr<l>

Decode 1/2 (DECOD 1)
●

I

)

\
.<

\



>.

I

3al9419tua1330*93SMU1

1+
@3UlMLSN19N1W2XI

3n3m21LSIUHS3ML21J

m

.*MMM1~IINI
--l<e>M1sNI3m

1<11>=u!

1Mls?aI’CN13ME

●

.



4.1.1.8 Implementation 143

4.1.2.8 EBOX Operand Registers
,,

The EBOX Operand Registers are used to hold the next set of operands for the EBOX. If “the
IBOX gets further than two operands ahead of the EBOX in fetching instructions and operands,
then it stops and waits. If the EBOX is done with a given instruction, and the operands for the

I

“ /“

next instruction are not ready, then it waits. The EBOX Operands Ready Control keeps track of
when operands are ready, and when the EBOX takes them.

e

*

b



,.

“-m

I

I
I

m

_

l=Mm93MMS●KI

I

-l*1-1

m

xxx

-L94t9110
9s$3Zrrl

lU.+0J.3s

11s\
93M

lratlxes

3
x

Udoxrlx19z10t1
9%Ulmamlslj,

lm1

IvI

rc-J

——
9

.—
—

●



e

I19’’-3I
x

*1

1.%

l-muS93Mdo@*s

..—.—



146 Implementation 4.1.2.9

4.1.2.9 Memory Interface

The Ikfemory Interface controls communication between the processorand the switch, and takes
care of generating hamming codes,and correctingerrors. The format for the switch control words
is shuwn in drawing IOFORM. An 1/0 operation is started by sending an 1/0 control word to
the switch, which specifies a memory address,whether it is a read, write, or both (a read-modify-

,

write operation), and whether 1 or 4 words are to be transfered. If it is a read operation, the -.

processor just sits and waits for the data to come back. On writes, the processorwaits until the’
s~itch sends a control word back with its VALID bit set,which signals that the processor has a
direct path to memory opened, and to start sendingdata.

&

●



. $“’

R6ezte
r

cbcxexlc9:a.3m399awwM.I*

Czcz1e

rIIrI

aklorlViva

.-
0

auoll10WNO3vltfa

.—
—



—
—

~ ,
7 BIT
1e173 ,

x

u LWTn<e, SS>
-II(G Corz? co —

—xORAx#iuEcTOR

m mm rcn<e:m>

x .,.

h< 39> Fs<letal> 44 FS<*:24>

7 86
/ ‘ / ‘

a
/ ‘

1

rmn Sul TW< m: 24,
26 BIT

XCG

L teax6 ~ le176 ,
Fmil su1TOt<e:24>

C44 Fs<e:24>

o x x

a

I

r3e RI-L 1NT[I?F7?W lNI L o

744 L

L J T&67

Memory Interface (MFACE)



\

-3wmu

II
T

ON

x

I —0813s
,9:e>$sa0LuKu3!l.10

-30lleX330,9c:e>1rJ

116—As

,

●

●



— — —.

r I
z

m I

cl, > :CB
m

or<-
. 01 PI

Pu

01.6.
e 1*163 P2 I%?l

01.(9 a3 P3
Pa

Dl<w
64X Pea PsW

Q1<19
Bs

Psq

01’%
et.

D1 < w>
w

L 1

\ \anl’ m>
m

01< 9> m

m . Zw
s?

0 <m>
03

01<2?>
m

D]< 2?>
m

I)]<*>
k%

01< a>
)W I

Check Bit
.

.

Generator

aP1*
P11
P)?
P* 3
m 4

ie16e

@1c34>

==i

.
z
z
z x
z
z

aF%%
P?l
P??
P?3
P? 10160

01.36>
z

.
2

1
x

.

?

t 1
Pm
Pm
P3?
PJ3
“ -.. 30369

: SE s= >

-1 I

1/2 (CHKGN 1)

., ..
,



●

x

09101

<*S

.E
z
z

xz
z
z

.=.0

relet
U=Ie.J

[w

LI

x
t.?

E
z

xz

z
z
z

aletz
Ensd
L&id
asd

●

—.—
.

II

1

—



S<3) I Xcx? I

(’ :
J

J

I
En c1

OQ

Syndrome Bit Decoder (SDEC)



I

I

I
4.1.2.10 Implementation 153

4.1.2.10 lBOX ControlI
●

The major sectionsof the IBOX Control are shown in drawing IBOXC. The following sections
will go into detail about what each of these sectionsdo. In addition to these sections, there is a
section which gives the flow of control of the prefetch logic.

*



..

(C)XOfM)PJ3UO0XOfH
*

I

II

Mu

—



4. I.2.1O.1 Implementation 155

4. L2.1O.1 Instruction Prefetch Control

In addition to the three micro-sequencers in the machine, there is a hardware control unit called
the Instruction Prefetch Control, which keepsfetching instructionsahead of. the P-sequencer, in
order to keep the pipeline full. The basicflow of control is shown in drawing FLOWF 1.

The sequencer goesfrom one state to the next every micro-cycle,where states are represented by
octagons, with the state number shown inside. The rectangular boxes represent actions to be
preformed, and the diamonds represent conditionals.The rectan@lar boxes with cut off corners
represent macro calls to the macrosdefined,in drawings FLOWF2, FLOWF3, and FLOWF4.

●

.

I

1’ t

I
I



●

IN 11111 STflTE
●

FCTC?i $K+fETC?4 PC-

1 YES I IXCC9EImsrl? I

.?cm3

.
Instruction Prefetch Control (FLOWF 1)



I
a?mnlusN[143L3,

1momms.rmu3

-’.,
UOWdlMSM—+MH313J

83A

04

S3A

UISNIdinsai3H-
C+4

I

ru3mJ30(I4O11

.

.—



●

—
— —

I

I FETCH lNSTR MC16M I

Fetch INSTR Word 2 (FL0WF3)

I

.



II

S3A

4

~1”

w

lmOJ-2!1941

S3A

N’I



160 Implementation 4.1.2.10.2

4.1.2.10.2 P-Sequencer Control Unit

The P-Sequencer Control Unit is started at address OP SEQ Start ADR<09>, which is generated
by the decode RAM. For a given instruction, it can only execute sequential micro-instructions.
Its main function is to take care of the difference between the many different formats for the
operands of instructions, and to fetch all registeroperands,which the I-Sequencer fetches memory *

operands. -.

●

.a

,,

●



i

.

T?xmL&lSU%?StSllXOMI

i

“71I

.-----EY9’+

——

1-lWISlSW1d

r-1
x

19w61r<6:.3)-LWIS03SdO
anlm01

.00
n

S3mu

x
x

1
<xx:e>91dL9Lsetr‘<XX:O>d1

93?4
w

110Yx
xtxEu

v06
ms3mu
x

x

r
,m:e)9m.J19<1011<xxw>Nd1

93=1w
11sK

——
,.



-—
— —.

*-

P Imx SWX?T Fclrue:3
w STWW m$Me,3 >

I

I- a
6 BIT
Ieln ~ 1

0 uix3e:36> x

J% LcmD m mcax awl

L

P xmx sTm?T mR SE L<9: 1$

,.

“P Sequencer Control Unit 2/2 (PSEQ2)

—.

““”“
I

. .
r.



*

4.1.2.10.3 Implementation 163

4.1.2.10.3 I-Sequencer Control Unit

The I-Sequencer Control Unit is the main work horse in the IBOX, and is a powerful micro-
programmedcontroler. It can branch anywhere in its control store,can execute nested subroutines
up to 16 levels deep, and can preform micro-interrupts, which stack their return address. The
control store is divided into two parts, a fast and slow part. The only difference is the time at
which the control bits comeout. The fast signals are designated F121 since they come out around
time 21, and the slow signals are designated130.

6

b



. —

L16 nlC Wll?8,1t>

(w IIIc FmR<e:l 1> \

2

.?

P 120X STIW?TIWR8; 11> .

F121 nic m C#R@:ll>
1 I

L
6

Fl?? nlc MT w& Q3,7>
6 ?’--C

Tit.

-J w
I

122+126 I
T21 -23 L

r121 mc cow s~.e:2> 1.

FX21 nlc m Sa a,2,

PcaKa UP lNIT 1—

HIC m z)’-le126a

x m co
4 BIT CTR

16036
nxm INTERRUPTS

mc rm

x wx“=S1 s.? n

7a

F121 J5R L I

I

13 Jse L

T32 L

XN1 $101

*

‘1747 L
142 n]c CM M L

I Sequence; Control Unit 1/3 (ISEQ1)



(Z&rsI)$/2J!un10.mJocj~=umbasI

.

1W-121

00
<tI:mww3*U9,>

,
x>

salu

x

1
<)0(:$3>1<14-lX11

XIet
K*B1?

mlu-1
Lma

119xx
xlxEa

talSbkautzi

v
x3‘

vv
X3X3X3

xxxx

<\lwNmu21Ut9319<1011—L9zws‘—1wtelr<ttze,am31UI-
93U93Y9*

11821l:a<1lIS?~

1’
91

axI

r-kX3+-b x
x

1
<J.:x>ezr19ztel*

11+11?

93Mw
llEX4MIXEU

—.
-.

●

.



●

...

,

SM438491SSU110awm0w3ru

lN-

.

●



I

.

4.1.2.10.4 Implementation

4.1.2.10.4 EBOX Write AddressRegisters

167

The EBOX Write Address Registers are used to keep track of pending writes from the EBOX
into either the cache, the register file, or to memory. There are two write address registers, which
allow the IBOX to schedule up to two writes ahead of the EBOX. If the IBOX tries to schedule
a third write, then it is stoped until the EBOX does a write, freeing up one of the registers. It
has a set of four comparators for each of its two write address registers, which compare the
address of the words currently being read from the three register stacks and the cache, to the
addresseswhich have pending writes. If one of the comparatorscompare, then signals are asserted
which cause the IBOX to either wait for the write to occur,or to take the data directly from the
output of the EBOX. For example, if the IBOX is reading an operand for one instruction, and it
finds out that it is the result of the previous instruction, rather than reading the operand from
memory or a register file, it setsa bit in the EBOX operand register saying for the EBOX to use
the result of the previous instruction, rather than the contentsof the EBOX operand register.

●



.— ——- 0.

1
●

1 ml
10132 T

-we cm”

r
I I I

\

EBOX Write Address Registers 1/4 (EWAR 1)



— — — .

I

jwul e u Fmlwlt.:?y> I I II
EMX?6CWEML I I J II

<xcb
1

I
742-46 L

Cmemclwcmclcal L

E-em c BLcKX&

EBOX Write Address Registers 2/4 (EWAR2)

.

“.
,@

‘\-



●

.

EBOX Write Address Registers3/4 (EWAR3)

.,



,

*

.

s
‘\

I

II

QITSIe-3IIclmt
IrIo4-

1I1.

~

I

—

—

—

—

+

J TTMmmourn.,n401s

ar.JMtn’lJ35WSI(I,W4.j

=

1191

-11EIS.JMX(XJ3ON

1al

———



e“
;

.

●

,.

.

—
-.—

....—



—_——.

●

●
✍✎

CWR Y u WIR19:?6>
1

7 011
i0173 ~ I?& u am*:6>

x

IBOX Write Control 1/2 (IWC 1)



I@ lBOX KG u

14e1B0xcu T40 la USING OIJT

]661EOXRFGUL
o

T62-63L

FIW?l IKGCWCNL
KG ME

TN =-53 L

lEaleOxcu L

g-lccwm L

1*CI 113CIXIWG u
144! lEIOX c u

=+3-?
T1-6 L

I

-ma
CGO RC-JT L

1 cGe No RmtKT

IBOX Write Control 2/2 (IWCZ) “



4.1.2.10.G Implementation

4.1.2.10.6 Register Address Generation1“

I

I

I

175

The Register Address Generation logic is used to calculate all register addresses for operands
address as registers. Since the registers are in the address space, they can also be addressed by
using the Data Address Arithmetic logic if somefancy operationswant to be preformed, but that
ties up the cache. The Register Address Generation logic is used by both the P-Sequencer and
the I-Sequencer.

●

●

.



.-
— — ●

��� �

●

Pm LICST WG cn (e>

IF314:1EI> Ielw

x

DEST FQG $lNN&4>

x
P22 6SG u cfx7<e:4>

Pu m ST KG CTL<l> 1

SETcecl I

ml

19s6e . .

m.?

‘r OG Rrci ImR.e:*>

RFG .wwe:e> x
1*

sRcl?EGun =b

f
SffCREGOtJTSCL 1 BXT 1 BIT

F22SRCWGMS
REs R!ZG

, tes76 , _ , *@:76 , , C4@J SW KG GUT

x x

8E~

u a
J * elT

KG
_ ~ *U76 , C44 SK 17EG CUT

Tn 140
SEL

x

Register Address Generation 1/2 (RAG1)



(Z9VW2/2

I
I

x‘t>e-WI93M

1

%.?al

89W1

Ix

xa91*t

Ws ib*cPeuw93a‘$-ESW
mm

has~

‘e>aumuXs.zedL

x<61:+1>S1sItJ

<CZ:61>?119J3

891*1
1191●

<e>u>93UmsI

*



e+wzmwlxw:

\
\

—
.—

.



*
4.1.2.10.7 Implementation 179

4.1.2.10.7 Micro Interrupts

Micro Interrupts allow various conditions to interrupt the I-Sequencer to be handled, such as a
cache or page fault miss. When this happens, the micro-program PC is stored on the subroutine
stack, and instructiotw start getting fetched at the micro-interrupt address assigned to that
particular interrupt. The various micro-interrupts are all fed into a priority encoder, which
comes out. with the addressof the highest priority interrupt.

m

●

,
I

I

6

I

●



(lIOIN)

I

,*1*Wml

‘6,ZljUJnt

LPrSSIU3

—maosL
MSSIU94W1

w
,INr%Isaaoln3d

&

\.

—

●

—
-.



9

——

C4t3 CUT KG (WR II<.?>
C4B lXJ1 REG I?13RfI.3>
C49 OIJT WC IW)R R<4>

C* CUT RCG WI? il<6,
Ielm

C- CUT KG fOR a<6>
M—

C49 w? REG mR 9<?>
C40 CUT RFG ROR %’3>
C413 CUT RCG WR 8<4)

C* w T RCG $W178<6>

L/’

c~e c Owm-rccm L

Micro Interrupts 2/3 (MIC12)
*



I

4

.

d-l

Sse41aamSlual●E1

lNiS6tuSm3tuSSIU-1*1

.—————
—



4.1.2.10.8 Implementation 183

4.1.2.10.8 Stop IBOX

The Stop I BOX logic detects the conditions which cause the IBOX to stop its clock and wait for
some event to occur.

,,

9

●

1’ 1’

1’ t

I

1“

i

I

I

I

i’
●

*



— _

..

Slir n

Lf2STUClWll WTL

~xTu CW13WL
W W-S(RT L
EIU+R CIXL L

T40 lBOX USING OUT
o lmXWSOUTn L

C49 WC ETC. C4JT Sll
aelem

o x

1-X uSE OUl E L
Ielem

Stw e

LIKT u ~- CUT L

WXT u CIW I+ cWT L
N() MSIU7 I
[U,2R I(UI L

No RF-S(AT L Q
WX1u CI’W lNWX FWG L

.

STm c

FUCIR FU L L
114$1 U CW lNCA:X KG L

\‘.

-%

9

Stop IBOX (STOPBX)

.) t.p
*



.

.

—
—

—
.—

.—
—



●

.

:STCIPSIQSUSnlST=V~ZDSYWF=CmUZIU

STOPumtcucl
STOPc1
STW8a
STWC

I

.Da-
leaD

t+

ECx“
a

9

.

—

“*””L

*leles

-‘=x
7s.1>L

I
I

I

7S.2>L

IP---L

-“4’LI

I

I
!

T.LA-””L‘

1%1
Ts.e

1*1SI

Cx
TS<6DL

TS.7>

lstm

Cx
T6<7>L

II
I

L
.

IBOXTimingGener~tor(ITIGEN)
.



4.1.9 Implementation 187

4.1.3 Execution Box

The function of the, Execution Box (EBOX)’ is to perform variable-precision arithmetic and
logical operations for the IBOX; it executesone micro-instructioneach 100 nano-seconds. EBOX

●

can be decomposedinto the EBOX ALU (EBXALU), the EBOX Register File (EREGF), and the
EBOX ,Control (EBXCTL).

The EBXALU performs arithmetic and logical functionson two operands read during each cycle
I from the register file.

i’

The. EREGF contains 32 read/w~ite registers. During a single micro-cycle, any two registers can
be read for use as input to the EBXALU. Furthermore, during a micro-cycle two input operands
from the IBOX can be written into any even-odd pair of registers, or the result of the EBXALU
operation can be written into any register,or one operand from the IBOX and the result of the

I
EBXALU operation can be written into even-odd pair of registers.

Th? EREGF also can shift quarter-words and half-words into position for the EBXALU, can
sjgn-extend floating point numbers,and can deliver zero operands.

,,
1’

i

ii

!

o

b

4

.



(Xowf)xofiuo!anaax~

●



8

●

o

4.1.3.1 Implementation 189

4.1.3.1 EBOX Register File

The EBOX Register File (ERECF) stores initial and intermediate operands for use by the
, EBXALU during a sequenceof micro-operations. ‘

The EREGF contains two duplicate banks each of 32 36-bit registers(R[031]). Identical data is
always written into both banks. During a single micro-cycle,the IBOX A and B input operands
can be written”into any even-odd pair of registers(A into an even register and B into an odd
register), or the result of the EBXALU operation can be written into any register, or one of the
IBOX input operands can be written into a register(only an even register for the A operand, and
only an odd register for the B operand) and the result from EBXALU can be written into the
other register of the even-odd pair.

Since the first cycle of a micro-instruction sequencenormally takes two input operands from the
IBOX, the result of the previous cycle (le., the last cycle of the previous micro-instruction
sequence) can not be saved in the EREGF.

Because the two register banks contain identical data, any two registersmay be read out during a
micro-cycle for use as input to the EBXA LU. In the caseof a micro-instruction which reads the
result of the preceding operation,(or a micro-instruction which reads the A or B input operands
from the IBOX), the necessarydata is bussed around the register banks, therefore, although
writes physically occur one cyclelate, they logicallyoccuron time, except as noted below.

Each operand read out of the EREGF can be independently translated. The available translation
modes are straight through, floating point sign extension,left justification of a quarter-word, and
left justification of a half-word. Operands which are bussed around the register banks (&
described above) cannot be translated.

The EREGF also has the capability to deliver zero operands on either the A or B output
independently by disabling the registerfile output.



,.

.

----t

I

3
.-.

I19s$4Aeu5Mam

1
I
It

I<’:*,-rimcmw?13

II---4%7

q“P!!d-- 1

.— —
.-————

I(

‘r.:e>Mmwad

.

d=
St

w

Utet
11s%.

1
IdowIw3

1au3srtx



4

.
.

9
.

-—
.

..—
.—

..-
—



1

P_&----

ri!-eel

.-

.c:ewmHdO●11

-1s3aMt03amw4’”)

.

kEk---

I

I
Uc:emuimdoOti

L11*11

.

●
..



f-m--l”.

..

MS*8
Am1a—

oLo
69101
lm%t—

0s3MwNm3u
d

1
eswt

I
11st1-

—I

<C>a(wwdo3
<.?>#(mu,uJ3
<I>alxlw*3

——

●



.

I

I

I

I
1’

I

1;

I

‘i
i
I

~

194 Implementation 4.1.3.1.2

4.1.3.1.236 Bit Translate

The 36 Bit Translate (TRANS) is used on each output leg of the EREGF. Each TRANS is
independent and has the capability to perform four different translationsas follows:

1.

2.

3.

4.

Stsaight through. The value passes straight through the TRANS without 4
modification. ..

Sign extension of a floating point mantissa. Each bit of the exponent of a
floating point number is replaced by bit O of the floating point number. .+

Quarter-word. One of four quarter words (depending upon the low-order
address bits from the IBOX) is left justified, and the low-order quarter words are
set to zero.

Half-word. One of two half words (depending upon the low-order address bits
from the IBOX) is left justified, and the low-order half-word is set to zero.

The TRANS can not be used to modify the resultof the preceding

●

micro-instruction.

●



(SNWLL)

‘S&:ec>[

.

i+
W3=sv.,

●

●
��

.-



196 Implementation 4.1.3.2

4.L?L2 EBOX ALU

~he EBOX ALU (EBXA LU) performs all arithmetic and logical operations for the EBOX. The
EBXALU can be decomposedinto the 3 Input Adder (31NADD), the Shift Box (SHFBOX),’ the
Exponent Box (EXPBOX), the 36 Bit MUX Merge (MUXMRG), and the QRegister (QREG).

d
The 31NADD can add three operands, perform a few other logical functions on three operands,

or perform general logical functions on two operands. The input operands to the 211W 1313 are A
.

(the ‘A output of EREGF), B (the B output of ERECF), and Q (the quotient register, QREG).
Internally, the operands are shiftd and multiplexed so that a single micro-cycle can do four bits .,u
of a multiply. ,

.

The SHFBOX can do arithmetic or logical left or (limited) right shifts of a double-word input
onto a single word output. The three single-word inputs to the SHFBOX can be combined in
various orders to accomplish single-word arithmetic or logical left right shifts or rotates of up to
36 bits in a single cycle.

The EXPBOX performs exponent arithmetic. The EXPBOX has its own internal registers, so
that after loading the EXPBOX from the A and B operands,exponent arithmetic can proceed
independently of the computations in the main data path.

The MUXMRG produces the one EBXALU output, R<035>. The inputs of the MUXMRG are
from’ 31NADD, SHFBOX, and EXPBOX. Special inputs are provided for special function$ one
input merges the exponent with the shifter output, one input does a multiply shift, and one input”’
does a divide shift.

The MUXMRG also has the capability to selectively merge each quarter-word from the
SHFBOX with the output of the 31NADD. This capability is used to merge the result of a
quarter-word or half-word operation (which is shifted into place in the SHFBOX) back into the
destination word (which passesunmodified through the 31NADD). In this case the destination
low-order address bits control the MUXMRG.

The QREG holds the multiplier during a multiply sequence,and holds the dividend during a
divide sequence. The QREG has shifting capability internally. The QREG can also be used to
hold temporary results (for example, over the boundary between one micro-instruction sequence
and the next).

*

*

8



I..

m
e

L

--iG%t::.......-3..=

I
I

I

.U.

Z2F?3>ljna

““===4-

—.—.—-.
—..



198 Implementation ,. 4.1.3.2.1

,.
4.1.3.2.13 Input Adder

The 3 Input Adder (31NADD) has the capability to add three 36-bit numbers, to perform some ,
other limited logical operations of three 36-bit numbers, or to perform general logical operations
on two 36-bit numbers. The three-input addition capability is usedprimarily to produce 4 bits of

6 a multiply operation in one micro-cycle. ,, ~

The 31NADD can be decomposed into the Carry Save Adder (CSA), the EBOX Full Adder
.

(EFA), and various multiplexer and multiplexer latches.
,,(k

The CSA is an array of 20 ECL 10180 chips. The CSA forms the first two legs of the three- .,
input adder. During a three-input add, the CSA adds three operands to produce a sum and

carry vector output (each 40 bits long), and EFA adds those vectors to complete the add. Two
legs of the CSA are dedicated to A, (or to shifted versions of A) which is the multiplicand in a
multiply. The remaining leg of the CSA can receiveA, B, Q or a micro-code constant.

● Each of the three inputs of the CSA can be independently set to zero. Furthermore, the 10180
has the capability to independently complement two of its inputs. These capabilities are used in
the multiply ’m.icro-cycle.

I Two-operand functions can be performed in the EFA. One leg of the EFA can receive A, B, Q I “
or micro-constant (in addition to carry out from the CSA), and the other leg of FA can receive

i’ only B (In addition to sum from the CSA). The EFA producesa 40-bit output,



●

a<e:x> ,2

EL =<0,35>

“‘d

ss~

~6 m a m .91< 23> II

E6mf31M=<1>

/

.

‘G

co<0,3D

---r=

“.-
4

3 INPUT Adder
●

●

10

A ““i”

(31NADD)

1.

--F=l--
--lsJ

I

I
I



I 200 Implementation 4.1.3.2.1.1

4.1.%2.1.1 EBOX 40 Bit Full Adder
I
I

The EBOX 40 Bit Full Adder (EFA) can perform

,! operands. It is constructedwith 1018I ECL ALU chips
‘1

The EFA can be decomposed into the 40 Bit ALU
I Control (EFACTL), and the Condition Box (CBOX).I

arithmetic and logical functions on two
and 10179 ECL, carry-look-ahead un[ts.

10181 (40ALU), the EBOX Full Adder o
c.

The 4dALU performs a full add in 24 nano-secondsworst casefrom the data inputs, neglecting
wire delays. It also performs the full 10181 repertoireof logical and arithmetic functions. ..1.

The EFACTL controls the EFA, producing the mode, function, and carry-in signals for the
10181. The mode and function bits can came either from micro-code or from the divide logic.
The carry-in bit can come from divide logic, rounding logic, multiply logic, carry-out of a
Rrevjous cycle, guard-bit logic, or micro-code. The Rounding Box (ROUND) saves guard bits
during floating point operations and generatesa carry-in bit for the EFA depending upon guard
bits and rounding mode.

The CBOX detects single-word overflow, single-word negative, single-word zero, single-word less
than or equal to zero, mantissa zero, and mantissa overflow. Single-word carry out is generated
directly in the 40A LU. Since quarter-words and half-words are left justified and zero-filled in
the TRANS, the single-word conditions are sufficient for testing quarter-word and half-word
operatkms. Wrong Branch Logic .(WRONB) combinesthe generatedconditions with control bits
received from the IBOX and determines whether the IBOX took the correct branch on a

. conditional branch instruction.
BRANCH automatically becomes

.,

,.

If the IBOX took the wrong branch, then X WRONG
asserted.



I
‘6C:e>

am
!
I

I
I

-“ELI

.
——.



I

I

.$,

(W.3vm)IoJalJooVdXofm

r<?,0>13s113w+013

--ke$===i
Q====

-*

,.

<Z:e>ulsO?j!nSl
nw

llac
E*Z

1

r-%
X33d

1
13GM

<9:0,113Aldrlxw

1

m
<9:0>113msaMsul-

)4

t<*:e>113W3813

~t
e

=+

ea
1IWISUXWIUUM:1NU3M

a

lwsllms3s-naau+e>/ct3tKw3il:

—

*——
—-—



●

. .

I I

● CO.

.

*( V+G1*C%8)

I =1L1N3- 11>● =- G@91*Y

SOdl<%> 101-
3 Bll

E

RECel

80tT ‘ 3, *O1OU?

F
T?,

slmT<4> C0av41

IF 6tlt7=-1 ( RIGHY =117 1
H w Y+(Y a G1> El_sE Y*Y

.9.,

G*
,?J

b!

1

\

Rounding Box (ROUND) .



I

]_
!

u
3

a1W?LN39
lollla’4m

<+:?>10U4

/

1
<t:e>mXx0/

2

..

s+N3

fJJ- ?43s

e

7
1>13SXWi31Wtet

110f

t
Wms
11%c

l-r

dt-s-u:
“:”:

9W?FZ:”:*

s.

●.

c

z

t

●
‘J+U:~:z:”

. —.—
.-——.



ts.
,.“

am<*>S

Cc>awan-m03!!s

<exnmnmmm

a)ns

*——

.-



.“

I

I

I

1

I

—

d!

‘?

.

0H3z-NOu12

(OM32>Rm03UOW1SS3-I31

—

.

(7A303)2/2sJo-@uaouo!upuo~

b

[

<,2>s
-3?.2>s
.61>s
al>s

<e>s
<L>s
<’2>s
<9>s
<b>s

.— ●



I

.
(f19NOlIM)

;’;

r“—
9NCMI1s31023

A

1?J31U3U9WmWa411d
13

I

rI-4-l

T“

“Am

Id9

.,
—.-.

——..-



208, Implementation 4.1.4.2,1.2

4.1.4 .2.1,2 Multiply Control

The Multiply Control module (M~YCTL) ,generatesvarious control signals for use during a
multiply cycle.

4 bits of the product are generated during each ‘multiply cycle; the MPYCTL examines the 5 low 0’
order bits (including’ the carry out of the least-significant bit) of the Q register, and sets up the

* 31NA DD to perform the multiply cycle. One leg of the three-input adder receives A (the
.

multiplicand) or A*2, another leg receives A*4 or A*8, and the last leg receives B (the partial
product). Each of the “A” legs is either added to or subtracted from the partial product. <.

The table included in MPYCTL defines a Z-bit-per-cycle multiply algorithm. XO represents the
least significant bit of the Q register Q<35s, X 1 represents Qx34s, and CI represents the carry out
from the Q register from the previous cycle (Q<36>). F shows the function to perform, that is,
PARTIAL- PRODUCT6PARTIAL-PRODUCT + F*MULTIPLICAND. Q and
PA RTIAL...PRODUCT are then shifted right by t,wo bits and the cycle repeats. The other
columns of the table show the values of various signals which are needed to implement F. The 4-
bit-per-cycle algorithm is a direct extension of the 2-bit algorithm; two 2-bit cycles are performed
in parallel using the 31NADD and examining 5 bits of Qinstead of 3 bits of Q

*

I

i’ *

.’

*

\



3I

Es7mr-4--‘I

1I

●

13
lN

●

am
awl

1N3law.+nLx-
6SW;

Im3u0Y

—

●
�✎✎�



I

R
I

I+----t

r\M

1>N31-93

I‘H

.

●

i+=-
1

r=’t-=- 191eLaw:2

14eMI*:.2

..



.,

(-IJ3VS3IOJJU03V!X3

—
—.



—.
——

.— —.

%

H ●

1

2

3

4

n 6

6 I ..
,.

Q<34:3M I

2
●

1

2

z 3

M 4

M 6

M 6

7

.;
,, 11 BIT

10a64

3
I

i

I
I
I

a

Multiply CIN Control (MCICTL)



4.1.3.2.2 Implementation 213

4.1.3.2.2 Shift BOX

The Shift Box (SHFBOX) performs shifts in parallel with the arithmetic operation of the
31NADD. The SHFBOX can be decomposed into the Shifter (SHIFTR), the Sticky Bit
Generator (STICKY), and various zeroescountersand multiplexer.

The SHIFTR takes two 36-bit input words,and can perform a left shift of O to 47 bits or a right
shift of 1 to 16 bits onto a 36-bit output. The two low-order bits of the output become guard bits
in floating-point operations. Guard bits may be mergedinto the SHIFTR input at the top of the
low-order input word; this capability is usedduring floating point postnormalization.

STICKY examines the output of a zeroes counter (the 36 Bit Bottom Zeroes Counter) and
determines whether all the bits lost (beyond the guard bits) in a ‘right shift are zer~ if any lost bit
is a one, STICKY assertsthe sticky bit, Y. [Kahan 1973] discussesthe need for and use of the
sticky bit.

Two 35 Bit Top Zeroes Counters (TZC) allow the contiguous zeroes(or ones) at the top of a
floating point mantissa or an integer to be counted. The floating point count is useful during
postnormalization.

A 36 Bit Bottom Zeroes Counter (BZC) counts the contiguous zeroes at the bottom of a number.

This count is essentialfor generating the stickybit Y.

.

*

.

0

I *



t i [ 1

I
T-13 L

a’e,35> ,1
e 36 ❑ IT

10173 ~ Stan a IN <a,39
S10 SHIFl ~ IN SCL’1>

1 n
aT

slilFTc0:37>

[
/— E

- ~7

C10 Sl+lFT fl 1?4 SEL<e> I

I
I

= MIX
LAIKn
10 us

1
ILT S$ilf_TB XN<13:S

FIB SH1rT 0 IN SEL.9> J

34

/ L

I
6<0:35> /1

e 36 81T S1lCKY BIT

e<a:36> /1 36 ❑ IT BOncm —TOP.

x ID*74 -s c E7c<e:s>
BaQm<e:s> Ezc Y -

Y e.zc

0<e:36> T 1 C0U41ER
24 z

❑ w z S041<0, S> ~==m K? stm<a: 6>

7. 3(,
B

m Y

F6 SHIFT B IN SEL<l ,2> T
1e16a T10-13 L

T SHIFT 8 IN =L<*l>

Z:C16 c%=’ N<B, P

b

I

s

1“
E6PT?EEN

.
Shift Box (SHFBOX)



4.1.3.2.2.1 Implementation 215

,,
4.1.3.2.2.1 Shifter

.
The Shifter (SHIFTR) takes two 36-bit operands as input and can shift them left O to 47 bits or

“right 1,to 16 bits, producing a W-bit result (36 bits with two low-order guard bits for floating
point operations).

I
I ~The Shifter Control (SHFCTL) allowsthe shift count to comefrom various sourcesas follows ‘

l“”

,-

1
‘-

a QW 3 holding register: .

a QW2 holding register,’

QW3 of the A register,

QW2 of the A register,

micro-constant,

exponent ALU holding register,

constant fields for specialoperations,

top zeroes(ones)count of a mantissz

top zeroes(ones)count of an integer.

and

I In addition, many of these counts can be subtractedfrom 36 before being used. Subtraction of a
,

count from 36 is necessaryfor simulating right shifts.

‘i The SHIFTR is composedof three levelsof multiplexer. The first level performs a shift of O, 16
left, 32 Iefi, or 16 right the secondlevel a shift of O,4,8, or 12 Ief’kand the third level a shit? of

I 0, 1,2, or 3 left,
I

9

,



●

— —- .—

SlllFTRIGMT 1T01686H1Fl LEFT @T047

S047 = 11 m ~ + SH1F7 =1(WI 16-%UX (2 TO 16)

9nl=Yvmcxx(Yr*lt>* Smrlm Yn.YOW la To 47)

2

SUWTER Scm<e, t>

C0wW5A /

LImW (n&IQ
2

Z13+’l<e: 6. S041<2:3>

c /

—

--’---w

I I [ ,/ 2
SWT<4:6> I

Shifter (sHIFTR)
.



i

I
M33&Je13

s
Ndx3e.z3

1
mset
Jzete-

Ens:z

e~ti‘“’:“:’’’:”:’:’
L

<9:e>131H51s30

1

aw,

ve

N3sx

z-

1Ww!

1*
<9:.s,331I-1ua09nu9Elrn9

,g:e>lna
WLICJSt-
1109

●,s:~>,~

1Ct-eli

I‘9>U3ljm4s94

9C

,J
6

et

s,

a<Omxw131HSa

9ua01
z.9C

MO13rH9

e

,S:e>al’jIIAaeCt-eal1Ulelt

I●$

t●e

mamml

d

<S:e>sod3M.9eu1r
lb101<C>ne:<6C:K>W3

Fa93M
Ize9

h“”
m3d

7“

——.
.



-.

(IJNd9$)ISnu!JAIJOsnld9S“
.

Ff1

e

I

&

,*>

ad

II

<s:*>f

——
.—..—.—.

.



-
.,

.-.l-,
J:

.
.

.::
.-:,.>

.
,,.,

.
—

●

.-
—



..

.

<9>U-IS,?s
<*>LMW,33
<c>W-ls28
<2>1.MS2s

i
C1>WIS2s

1

u3.LmI19J.!H1e13

I
Owm

1 <9>U3
u

UmzsM.L <*:t>U3
SS101

‘e>U3(lWZsH

1

d
3

a19t

●

/
/

1



4.1.3.2.3 Implementatio~ 22I

f

●

4.1.S.2.3 Exponent Box

The Exponent Box (EXPBOX) performs exponent arithmetic in parallel
the EBXALU.

The exponent box receives operands from the EREGF and stores them

with the operation of

for future use. Most
floating- point operations thus require a preliminary cyclein which the exponents are loaded into
the EXPBOX. During the preliminary cycle, though, the QREG can be loaded. Furthermore,
translations are not permitted until one cycle after the operands to be translated have been
received from the IBOX.

Complementers on the A and B input operands conditionally complement the exponent
depending upon the sign of the mantissa(bit O),prwlucing the true excess-128 representation of
the exponent, regardlessof the sign of the floating point number.

The EXPBOX contains a 12-bit ALU which is controlledentirely by micro-code. The A leg of
the ALU can come either from the A exponent complementedor from the latched ALU output.
The B leg of the ALU can come either from the left shift count latched from the previous cycle,
from the B exponent complemented,or from micro-code.

Since exponents in floating point numbers have only an 8-bit length, the 12-bit ALU allows
exponent overflow or underflow to be carried until the last step of a floating point operation, by
which time those conditions may disappear.

The output of the ALU can be saved in an output register (for input to the SHFCTL for
prenormalization), or can be conditionally complementedby the sign of the input to the SHIFTR
(in preparation for merging it with the SHFBOX output at the end of a floating point sequence).

The PPNCMP compares the left shift count from the SHIFTR with the postnormalization limit,
and compares the ALU output registerwith the prenormalization limit. The signals generated by
the PPNCMP are used in generating prenormalization and postnormalization error traps.

●



1+-1

r
5

1[UlsW

‘+1<‘“’-4
11&/

/

II
4

q

I.

1*let11.,e:t>&.uc1
IJalmkluJ>

lles

n

&
)+-G4--

—.-



—
— —— —.——. . . . .

●

m o BE THE ExmlctG DFFEIWMCE

-OS (W?ElC611! 191X L) FF

-0> (+ft~n mm -1 IFF

o< Pf&mORn tmx +1 IFF

cKPmJtml$ x XFF

{O> FKIUWl NW) L Xt=f=

PREu L

.
.

m w am<3D

L
M

e 8ZT
c-lsNl

. :FRf. e:s> 101%
~ 1

c

Y-’

SCMT<%,6>
L

H,w.l. e,6>

w
Pre/Post Normalization Compare

9.!

(PPNCMP)
h
w



224 Implementation 4.1.3.2.4

/.1.3.2.4 36 Bit MUX Merge

The 36 Bit MUX Merge (MXMRG), determineswhich of eight data paths is delivered as output
to the EREGF or to the IBOX result register. The eight data paths are

The lower 36 bits of the output of the 31NADD shifted zero,
or right one bit. The left-one shift is used during divide, and
is used during multiply. The upper four bits of 31NADD are
multiply operations.

.
- A 11zeroes.

- The output of SHFBOX.

- The output of EXPBOX.

Miscellaneous fields from the EBOX.

left one, right four, A
the right-four shift .
needed only during

The MXMRG also allows selective merging of each quarter:word of the SHFBOX with the
output of the 31NA DD. This capability can be controlled entwely by micro-code, in which case
the micro-code can selectthe sourceof each output quarter-word independently, or by the address
bits of the destination, which are supplied by the IBOX. Merging according to the address bits ‘
of the destination is necessaryfor quarter-word and half-word operations in which the result
must be shifted into place and merged into the destinationword.

The MXMRG also allows the exponent path to be merged with the output of the SHFBOX for
producing final floating point results. In this case,the sign-extended mantissacomesthrough the
SHFBOX and is merged with the exponent.

‘,

b

*



I

I

1

.

Fk“”’

I

It==

.-—
_—.--

-.

-d----

H-=9

1=

<>0,9

9<a:e>g
●,

<e:e>*

.



a“A
$,.

,g>mml1s30zi2

<e>uwHOlLsm213

1
w39J31“1 mw% lIas*w3LM.U213

————
●�✎�



4.1.3.2.5 Implementation 227

4.1.3.2.5 Q Register

The Q Register (QREG) is a 37-bit shift register (36 bits plus carry out of the least-significant
bit) which is used to perform, multiplication and division, and which also serves to hold
temporary values. During multiplication, the QREG holds the multiplier, and during division the
QREG holds the dividend.

The QREG is built of ECL 10141 universal shift registers. It has the capability to parallel load,
shift right four, shift right 1, shift left one, or hold, all under micro-code control. The right-four
shift is used during multiplication, and the left-one shift is usedduring division, as follows

Shifting right by 4. During multiplication, the QREG is initially loaded with the
multiplier. The EBOX uses a multiplication algorithm that examines the
multiplier and producesfour bits of the product each micro-cycle. Each micro-
cycle the QREC parallel loads from itself, moving the higher 33 bits into the
lower 33 bits. This is physically equivalent to shifting right by 4. The 4 most
significant bits loaded. into the QREG are the 4 least sigrdficant bits coming out
of the ALU. During a multiply theseare the 4 leastsignificant bits of the current
partial product. After the last cycle,the QREG contains the low-order word of
the product.

Shifting left by 1. During division the Q register is initially loaded with the
dividend. Each instruction cycleone new bit of the quotient is shifted into the
least significant bit of the ,,Qregister.

.

b



..

.

.

.

0tw31LL1

<Z,mo.313

—



4.1.3.3 Implementation 229

. 4.1.3.3 EBOX Control

‘The E~OX Control (EBXCTL) includes all control logic and miscellaneous logic. It can be
decomposed into the EBOX Sequencer (ESEQ, the Fixup Generator (FIXGEN), the Status
Registers (STATUS), and the EBOX Transmitters/Receivers(EXCVR).

I

1“ The ESEQ provides all sequencingcontrol.

The FIXGEN produces the fixup ,signal. During someoperations,such as floating point add, the
cycle which is normally the last execution‘cyclemay, in rare instances,generate a condition that
requires further processing. In that case,the FIXGEN raisesthe fixup signal at the last possible
instant, causing the EBOX to lose one cyclebefore continuing with the operation. If fixup is not
asserted, then the operation will completewithout wasting any cycles. This fixup capability allows
conditions generated during the current execution cycle to affect the flow of control, without
requiring that the next cyclebe wasted to test conditions.

STATUS contains processorand user statusregisters.

The EXCVR handles receiving and transmitting mod IBOX/EBOX communication signals.

I
1:

I

‘1

.



(Imxm)IOJ3UO0Xofia

-,.

.

a

●

.——



4.1.3.3.1 implementation .231

●

4.1.3.3.1 EBOX Sequencer

The EBOX Sequencer (ESE@ controls the sequencing of the EBOX. The major components of
the ESEQ are the 12 Bit Branch Address Merger (BRADRM), the EBOX Branch Condition
MUX (EBCMUX), and the EBOX Control Store (EBXCS).

The BRADRM determines the source of the next micro-instruction. The possible micro-
instruction address sources,include a micro-subroutine return address, the IBOX-provided
macro-operation starting address,and the micro-code branch address. Since micro-instructions.
are read out a full cyclebefore use,BRADRM must be setup approximately 1.25 cyclesearly.

The BRADRM allows an N-way branch (N = 2,4, 8, or 16) on the low-order SHFBOX output,
the low-order 31NADD output, the FIXREG output, or the conditionsgenerated in the CBOX.

When FIXGEN asserts the fixup signal, a special branch address is forced into the micro-
program counter to.initiate a fix up sequenceone full cyclelater.

The control logic in the ESEQ allows any addressinput to the BRADRM to be used for a jump
or a jump to subroutine.

The EBCMUX determines whether the branch condition being tested by the micro-code is true,
and if so, allows the micro-program counter to be loaded, otherwise the micro-program counter
increments.

!

,,

.

●

I

I

1’ *



—.
. —- —.

!

,!O
T17 F]= L

1*1-

o 0

I , 7“sTmE

c

a r
1

x SIW-21 Wllwe:ll> I
i2Rmmi

E IR CMM<O:S1>
z -ss

12 01? CIR 12 ml cm 12B X*.94

3—
*-*6 l@016 em

SH1F7. P:36>
T . ~ 1 T - x T

*e146e , _
1

fR<?6:39>
:

P
FIxm G<e:3> $!

T e

*U ccm<e: 3>
6 cm

— 7
CK ~= Ru

N6tLD4

?

m—
cOImlTION mo

T* T
T3-6L

r EtR CKST.0:2> * 3 EIT
se16e

T ,

Z:n:z D
1* %!27 u

Z@ , asa
s

2 BIT
n

M,M : J* 1 le*7*
‘le

T
:!4 : *SU

Z*

I
n

o lelem
T2 L o n. “ .

EBOX Sequencer (ESEQ)



A.
.

mc+-

●

.
.

●

—
—

—
—

..
—

.
—

.
.



●

I‘1‘tl:e>

<L:e>c

r
z

L“,$:0>$4
<~:~>--~

Ulel1
110●<c0>4

=--GM=
---=+

IT)
0!.

—



4.1.3.3.1.2 Implementation ~ 235

4.1.X3.1.2 EBOX Branch Condition MUX
●

The EBOX Branch Condition MUX (EBCMUX) asserts the parallel load line on the micro-
program counter if and only if the condition selectedby the micro-code Is true. EBCMUX allows
any of 24 conditions to be tested, and allows those conditions to be inverted before testing.
Testing of conditions for branching cannot be done during the cyclethat the tested conditions are
generated, but must be done during the next cycle,sincethe micro-program counter is loaded one
cycle before execution commences.

b

i’ ,

I

I

a



— —
— —

●

●

WTZL
1 I

==--4 I

I co, C0U4T DOW
6 I

L-l ---w
C W SEL<l>

11-

? -:mxlm
5UUL ,1 BIT

● se*64 ~

NuL - *“
sum 1

4=

POST u
SUE

L .?
6

13@M , , 1 811
mom FIx L ~

99164 ,
C)(PUL

4E E$f13t1wcmcl

s
I*

- 6

EBC SEL<~ :lNU nle 119
?17 F1xlr /1 L

mmccnm

c>? KILL Emm

E EC 5EL.3,9

E EC SCL<2> ●3

EBOX Branch Condition MUX (EBCMUX)”



4.1.3.3.1.2.1 Implementation 237

● 4.1.3.!) .1.2.1Repetition Counter

The Repetition Counter (REPT) allows the micro-code to contain “FOR” loops. REPT can be
loaded from either the 31NADD or the micro-code, and can be counted down and tested under
micro-program control. REPT thus allowscontrol constructsin the micro-code such as ‘branch if
zero (non-zero) then decrement”,and ‘“branchjf zero (non-qero) then load”.

,

*

,.
8

1“



A.
co

e ml m
19136

Fa<x?:39>
x T.

F
Cx

* 011
lean , Q

m
Is

L-

716 L

co
a BIT m

10136
gi m REPT<e:7>

1 T .
c

>! SI s? C1

T>*

z

&=-- <1>

I

COwEN—I

Ra=lTILm CCRR4TERamus,

.

Repetition Counter (REPT)

.,



4.1.3.3,1.3 lrnptementation 239

4.1.3.3.1.3 EBOX Control Store

The EBOX Control Store (EBXCS) containsthe EBOX writeable control store, various micro-
b instruction pipeline registers,and EBOX Parity (EBXPAR).

Control store for the EBOX is two-level for reasonsof economy. The first level is addressed by
the micro-program countefi it is 4K words deep by 70 bits wide. Ten bits of the output of the
first level become the addressbits for the secondlevel, which is IK words deep by 140 bits wide.
In general, signals which are needed Iong before the micro-instruction execution commencesmust ,,
be located in the first level, and signals which are not needed until the execution starts can be
located in the second level. This two-level control store allows the sharing between micro-
instruction of subparts of common control words. With the aid of an intelligent micro-code
assembler, the control store appearsto be uniformly 4K wordsdeep.

● EBXPAR checks the parity of control storewords and raisesan error signal if a parity violation
,is detected.

i“ !“

i’ t

I:,I

‘1

*

0



W$
T

..

:

,

\

1

<6b:e>3
/

/
09

.

91

.

FIll<ll:e,lJ
*

I
d

AlmwXC93

.—
.



I

-iI

<e:09>3

,

la

.
.

I1<c:e>s2

II

11,
I

..—___

9



.,

C33SXWI)

13!

I
<6:9>W

I1

LI

+--+-l

‘49:?4>1
‘‘~

Lmm$-011?
LW8X1XM1

r3!eI

z

<Cg:91>LL.?3Wm1411?1
wxlxml

r--+--k

am-ltS*I-l3-atN-43LIMH

WO-1193411SS3=XW

—XIXEB1W3

wwnnm-83m0u34*30swmmmmml

S4-3

●����



I

r---

e0

s

III

I1<1

●

——.—
—

●



244 Implementation 4.1.3.X2 ,

4’.1.3.3.2Fixup Generator

The purpose of the Fix up Generator (FIXGEN) is to sometimes,assertthe jixu} signal and cause
the EBOX to continue with the fixup micro-instruction sequenceinstead of starting a new
operation sequenceunder command of the IBOX.

During execution cycles’in the interior of a micro-instruction sequence, FIXGEN can store
.

detected fix up conditions in. any of four l-bit registers,and can use the contentsof those registers
to assert fixup on the (tentatively’) last cycle.

The Fix up Multiplexer (FIXMUX) multiplexes the fix up condition chosen by the micro-code.

-, .,

The output of the FIXMUX can be usedto causefixup during the current cycle,or can be stored
for use later.

*

o

●



_—
—

I

I

8

— D a
1 617

1*1X
RE

~ 16176 ~ _

Tt4+7 L
d

D
3

Q CM

I
T24

*

.
Fixup Generator (FIXGEN) ‘&

r.



3>*.
,.

.

II

rJ-f1°*1nIS(U
-iZw

ttetu-lfidx3
M

N38

I

1-

●MIfs

●zx<a4+gamoeM[

M04W3

.-
6

—.
.



.

-.”

●

.—
●



●

.--- . — —

H SIRTUS C- ST6TUS, @>

v ST9TUS Clna STaws< 2>

6WN e
SU7L 1 4 al-l
Suul. .?

3J
aEGm b

Su co 1e16a “ *e141 ~
T I T 2

P m c-<e:3>
H R CO STRTUS c- sTaTUs<3 >

. Is

<

PEal

9 I

72s

).)

.

Status Registers (STATUS)

s



.
●

9

—
—

—
-

—
.



●

x0RmcHTlam4 x mox ccmTmLc@D

x—c- x fmx CONTRQL.1:3J 12 BIT
RCGEU

x W Lcu c4cu1e:*> x FIWX CEN1RC4<4:6> x C2cx cm<e:le~ ~ 10176 , , c12 EFDX CmTMLcO:tO>

XBOPLWWU.0:8~ X EBOX CEN;EUL86: 7>
R

x OcsT LCU mu’e:y> x Emx cE8iTRcl*e:9s
PEu

x-rem x Emx Ccmlm< 10)

CCJNTROL~ L
112

.

$1? Fmx m8+12Gt~1:3> C12 — Cc+mco:?)
1

Q12 lWOX CmTlK4..4:6> CS2 e W LEU -<0:1> I

C12 CEIOX ccNT20Li6:7> C12 0 W LCULW67<*:I>
I

fY2 mOx ccmmm<e:9, C12 D2ST Lou mR.e:*a

EBOX Transmitters/Receivers 1/3 (EXCVR 1) ;



W-L

I
I

B . ● lrn TT
1*S3!

m, 2> I I

.“

,. JZBOX Transmitters/Receivers 2/3 (EXCVR2)



—.

L’

.
EBOX Transmitters/Receivers 31; (EXCVR3)



●

L

#

I

I

I

1’

I

1
I

,,

I

.,.?

4.1.3.4” Implementation
.,”

253

:,.

4.1.3.4 Timing

The EBOX iS controlled by the IBOX, which specifiesthe operation and the oPerands f?r the
EBOX. The IBOX provides the EBOX with the addressof the first micro-instruction in the
EBOX’S control store. The EBOX performs the operation by executing the sequence of
instructions from its control store beginning at the address specified by the I BOX.” At the
beginning of the last micro-instruction cycleof an operation, the EBOX raises the DONE flag.
In res~onse,the IBOX Prepares the next addressand operandsof the first instruction of the next
opera~ion. This section‘de~cribesthe timing of a normal macro-operation.

A macro-operation consistsof a sequenceof micro-instructionsas shown:

FETCH READ
I

EXECUTION” WR1TE
I

* FETCH READ EXECUTI ON” WRITE
I

FETCH READ
I

EXECUT 10N
+ I

PE_E!J

. . . . .

.. 0..

s
+-1n9truct i on-+ ~ time

cyc I e

Sequential micro-instructions overlap; during a given instruction cycle,three operations occur in
parallel:

1.

2.

3.

●

●

During FETCH, the EBOX fetches the next micro-instruction from its control
store and placesit in the pipeline register.

During READ, the EBOX reads operands from its EREGF.

During EXECUTION, the EBOX executesthe current micro-Instruction from
the pipeline register. The ALU produces a result by the end of the execution
cycle. If the DONE bit of the micro-instruction is set,the DONE flag is raised at
the beginning of the cycle.



254 Implementation

During WRITE, either the IBOX or the EBOX may write

I IBOX WR1 and IBOXWR2

or

4.1.4.4

into the EREGF.

---1
.3

I 1BOX WR1and EBOX WR I
or

I EBOX WR

~Instructioncycle~

The purpose of an lBOX write is to provide the operands for the next macro-operation. During
the first half-cycle, the lBOX writes operand A and B into the same address of the two r,egister
banks. The register location written into is determined by the EBOX.

During any instruction in which the IBOX is not providing operands, or is, proyiding only one
operand, the EBOX may write data into its EREGF. The EBOX write also occurs during the
first half-cycle.

At the end of an execution cycle, the resulb

is always available to be used as an operand for the next execution cycle, and

@
is simultaneously written into the EREGF during the next execution cycle(unless
two operandi are received from the lBOX for the next execution cycle).

.

-..

,



4.2 Implementation 255

4.2 Interconnection Network1
I
I The processors are connected to memory by a serial/parallel crossbar interconnection switch (See

Figure 2.1- 1). Data is transmitted 24 bits at a time through the switch, taking two cycles per dataI
word transmitted. Once it is through the switch, it is then transmitted fully word parallel to the
memory’s, since the relatively slow TTL logic in the memory’s can not handle the high speed of

I the switch.

The memory is divided into 16 Block Storage Modules (BSMS). The BSMS are interleaved 4
.( ways on the low order bits of the real address word. When a processor does a read or write, four

w&ds are transmitted, except in cases where the data is tagged as not cacheable, in which case
only one word is transmitted. Normally the address is transmitted once and the two low-order bits
are permuted in order to obtain the addresses of four consecutive words in memory.

With N processors, the common store resembles an n-port memory because of the interconnection
network, the structure of which allows each processor to simultaneously and independently access
different BSMS. When two or more processors try to accessthe same BSM, the conflict is resolved

* by the memory contention control logic. This logic ensures that no processor can access a BSM
twice before another processor desiring access can accessit once. This effectively solves the
deadlock problem which plagues some multiple processorsystems,in which a higher priority
processorslocks out lower priority processors for an indefinite period of time.

Each BSM has its own memory contention logic, the inputs of which are the request lines from
each processor and the outputs of which are the select lines of the interconnection network. The
request lines are activated by. control logic monitoring the address lines of each processor. In a
sixteen processor system, four of the address lines would be input to a 4-to-16 line decoder. The
16 output lines would indicate which of the 16 BSMS the processor desires to access.

As soon as a particular BSM becomes idle, the me&ory contention logic latches the 16 processor
req ue:t lines for that BSM. It then proceeds to service the queued processors until the memory is
again idle. The 16 output lines of the latch go to a 16-to-4 line priority decoder which
determines which one of the processors is to be serviced first. The output lines of the priority
encoder are connected to a latch, and to the select lines of the interconnection network, which
routes the data from the selected processor to the BSM selected. At the end of a memory cycle
when one processor has been serviced, the latch is released and the request is cleared.

The priority encoder then elects the next processor to be serviced on the basis of the new data in
the latches. This cycle continues until the latch is empty and all processors have been serviced.
At this time the MEMORY IDLE line latches the next batch of processor requests and begini the
next round of servicing processor requests.



—-— —

PROc e WT<C3:24>
rwn e ]we:e,

==

Pm

Pwc 1 aJr<$?:?4> P% nl
E4n 1 1N<e:4?a

PROc .? aJT<n:?4s Pi?

‘“=

n2
rim .= ]w<e: e>

mmc 3 am<e:24> P3 n3
19n 3 lN’13:~>

PRoc 4 aJr<e, ?4>
nrtl 4 Iluo:e>

PROC 6 .31T<e, ?4>

s;:

PROCESSOR-MEMORY :;-

COMIIUNI CATION

E===

Iirn e IFi<o,e>

==,

me

PROc9 om’Fl:?4> P9 n9
run 9 IN<*,*>

-c >e OtIT<a:?*> P 9e n ne
n-n 19 lN’e: 4?>

I=l?Oc 11 cW1<e:?4~ P 11 n 11
IWn 11 ]N<e: 4?>

x
Fwoc 1.? ctJ1<e:2*> P !?

P$70C ,3 0(11’ 0,2.> P 13

Pl?oc 14 alT’i!:?4~ P 14
::-

PRoc 16 OUICO, ?4> P 16 r! 16
tn-n 15 lN<e:*>

Processor-Memory Cross-Bar Switch (PMCOMN) I

,.. \
h- ,9



N.

w-
●

●

.——
*—.

—



.

I

mn e Oln’e, +?> ne Pe
F’WC 0 IN’ O:X>

W“ I otn. e: 49> ml P1
FfWc 1 lN<e:*>

m-” ? 01n<e:4?> na P2
Pl?oc ? lMcO:M~

ram 3 Otn<a: 49> ?!3 P3
PROc 3 Iwse: at

ml! 4 0111’@,4v> n4 P4
PROC 4 lN<e:~>

mm! s Olll<a: 49,
PROC 6 lN<O:=J

n6

nin 6 Otn. e:*9> m6 P6
PRw 6 ]N<e:a>

mll 7 O,J1’Cl:492 n> MEMORY-PROCESSOR P 7 r
Iwmc 7 lN<O:aJ

run a 01rr<tl:4v> ne COMMUNI CAT 10N

“e

Pe Iwm 6 ]N<e:.w>

l’mn9 Our’O: 49> n9 P9
PROc 9 lW<O:A>

Ivrl 10 OJT. e,49> n se P se
PI?(K m Iwee: 7-4>

Wfl 11 011s0:49~ n %1

w“ ,? alT. o:49> n %2.
:::=

mm 13 a,T<e: .9, n 13 P 13

w“ ,4 OIT<n: 49> .n%4 P 14 -
PWC !4 lNfO:-J

m-” ,s, OIT<R: 49> ,1’116 P 16
1*I?OC >6 Iw<e: .x>

1.

x

.

Mernory-PrOcemr Cross-Bar Switch (MPCOMN)

,. .“
J 7.



1fr1r1

*

—.
—.———.



.?-.

I

.~[:

●✞0!1S3103M

6a
<C>6lSXEIN33w31N1

r4-Id
4WS8

<c:@>z13SLIW

91a
<2>91ls.!flc,Ja

●ta
‘2>etIs.mm.!a

-Stax
<?>c!ls~lok!

?1a
<z>Z11S3WW

11a
<z>IIlS.3110JN

0sa
<z>et1slWIN

ba
‘Z>6lsaml?l3w.!LN1

A0&101rrl$
<<>eLsnwla30??

La
<?>z1S31104?I

921
,<>91s41mm

98
<.2>91S4W.31!

*a
<z>blsJm.nl,%

cm
‘?>clSJIIOJM

Za
<z>dlsxm-

an
<z>11S3KIJM

ea
<?>e1S311CJJMOd

I

I
I[

CE.z:e>1Osd

~.a <e>61S!lIt).ltl33W11?41
aaWJlxrls

,*>BLsJlm.!m30ad
.fW

<e>LlSHV.)M

9N
<e,v~s*m.w

9a
<e>91s!JIOM

●?I
<e>●lS.RI0311

Ca
<0>C1SJIOU4

Za
,0>?ls.nwm!

[M
<e>Ilsalrw

08
,0>elS.KW.UIOd

I

*

..——
0

●



-.
,,

D
—- —.

I
m

Re
Rtalcsl e <4>

$?6
WOIKST F, ‘4>

F&6 ‘
IWO! II-ST 6 <4>

R7
F.TGIIF$l 7 <4>

~
PSO 6 <0:23,

I

I
I

PO
*e

RrarsT 0 <6>

RI
lTraEsT 1 <s>

R2
Rrcirsl 2 <s>

R3
t?rOIJEsT 3 <c,

R4
WOISS1 4 <6>

R6
m- fnrsl 6 46>

R6
WOIFST 6 <6>

R7
M-.XM-S1 7 ‘6>

w
SIJ1104 R E

RrarsT s <m

lNTFm
R9

wF’XFS1 9 c6>

RI e
RTOu#sT !0 .c~

R1 1
fma=sl ii <6>

us 2
WWFST $2 ‘G>

XR1 3-
RCOWST 13 <6>

R* 4
W12(E-ST 14 <6>

RI 6-
RCmEST 16 <S,

2s n
flsnsrL 6 ae: 3>

PI

I

useRfalEsT * <7*

Rz
WaEST ? s7~

R3
WaKST 3 <7,

R4
RF-ST 4 .7P

as
RCaFST S ‘7>

I?6

‘s

WaFST 6 <7>

R7
RFaFsT 7 <7)

.5u1TCli R 8
RcaKST R d7~

Iurmw=
R9

RKaEsT 9 ,7>

R le
fw3tfsT le .7>

R 11
RsOLfsT 11 f7~

EC.21EST 1 <7>
R 12

XR93°
RCOCST 13 C7>

R 14
REO,E=ST 14 .7>

F
1 PST’ 7 ‘e:.?4> I

\

Processor Switch Interface 2/4 (PSINT2)



●

—

%0 0 <e, ?3>

r
m

Re marsr o <e>

al KfOIR-sT 1 <e>

R2 warsT 2 <e>

R3 IW.XM-ST 3 ’13>

R4 IWCJM-ST 4 <8>

R6 XOlr$r s ‘e>

R6 G+OIR-ST 6 .e>

Efqn ST 7 ‘e>

PWlc
wlTcn R e I.. OIKS1 B ‘8>

lN1f IWE
R9 WOICST 9 <e,

R Ie UFGIKST ?0 <e>

.::=

R1l M-4WST >1 <e>

R 12 RCOIJCST 12 <8>

“W6WST 13 <a>

R%4 Rrmsl 14 <e>

R16 RI-OIKSI ,6 ‘e>

esn BSf?SCL % <B: 3>

IV

I

Pso 9 <e:23> PSO la <e:23>

I

[
I

PO
Ra

Rca12-sT e ‘9>

l===
R6

Rrn12-sT 6 <9>

R6

“=
RF(JI!SST 6 <9>

R7
RFOIKST 7 <9>

SU13CH R 0 Rra(rsl e <9>

1NTI%CE
R9

RFlxlrsl 9 .9>

R 10 l?fOIFST 30 .9>

R 11
.Ilwl. 9 <e, m

R 16 WOKFST 16 <9>

m
Re

Rrlxrsl e <10>

RY i
FWIXEST 1 <%e>

k==
3?6 RrinlrsT 6 <10>

R6 Fm-G+nsT 6 .1($>

xH!====
-JPJ---I

I
6-3

r?e RCQlrST e <11,

Rx RrOLrsT 1 <11>

I Rfausl 2 ’11>

‘~ i

Rz

R3
!WQlrsT 3 <11> :

I?i-OtlsT 4 <Ii> ~

R6
EIWI131 6 <11>

R6
urOu-sT 4, <11>

R7
RrQtrsT ? <13>

=’”:=

SU1’ICH R e Wrousr e ’11>

R9
ItFawsr 9 <11>

R le
Rfallrsl lCI <11>

R 11 . RCCUI=T 11 <11>

R 12
REw(sl ii? 811>

XR13
W-W~T 13 <11s

R 14
wrOIXXT 14 ,11>

R Isk
WGIIFYT 1S <11>

B*
~- nsrlsa 1! <C.,3>

PI
J

I I
PSI 8 ‘e,24> J PSI 9 < &24> I ~ .Ew@__J

.

Processor Switch Interface !l/4 (PSINT$)



r--’
I

m
RO m-mcsl e <32s

Rs
RFrlllmT * <*Z>

m? M-CM2ST 2 <1,?>

R3 Rrarsl 3 .1.?>

*4 Rcalcsl 4 <12>

R6 RFarsl 6 .1>>

R6
RrQlo-sT 6 <,?,

R7 FWOIICST 7 ‘!2>

m
SUITCM R a RrGl=sr e ’122

lNTl=~
R9 RC.21K$T 9 <12>

a *e RCCAEST 10 <12>

R13 RFa KST 1* <12>

m 12 WCCUKST 1? <12>

XR13 lWOLKST 13 <!2>

R14 -
WQIICST ,4 <,2>

R I& RfarsT 16 <1.2>

e$n bsnsf L 12 <*:3>

PI

●

PSO X3 .e:23>

. _.—

m
R21 M-(X2-STo <e:13>

*3
RWXKST 1 <0,13>

R2
Fs012-sT ? <e,33>

R3
l?rGtEsT 3 ‘0, !3>

R4
IW(NKST 4 <2I: 93>

RS
RfOIKST G ‘0, 13>

W&
Rfm6ST f. <a,13>

*7
wa*sT > ‘e, 13>

Ptmc
WITCH R e IWCIKST 8 ‘0:13)

lN?FIICE
R9

lWGllE%T 9 ‘9,*3>

R le WUE-ST le .e,13>

R 13
IKCUKS1 11 <e, 13>

R *2 saJEsT 12 <a, *3>

XR13 rcarsl 13 .0:13,

R 14
M-QIKST 14 <0, ,3>

R 16
K.21KS1 15 <m, 13>

E!$.11
L3snscl 53 <9,3>

PI--r

r
m

*e
XWlf ST e <0:14>

R;
REQWST t <0, t4>

R,?
REIWCST 2 <0,34>

R3
Rcau-sl 3 <0,14,

R4
W~CST 4 ‘9:14>

R6
WFIXIFST 5 <e,14>

R6
Rfm!f ST 6 <*,14,

R7
RFQIES1 7 .e: 14>

FnOc
SU13U4 Re RCQIKST e .a: 14>

lMT F63C2
R9

MOLEST 9 <e:v4,

R *e
m-r4E3T 10 .2J, S4>

R 11
REWEST 13 ,2),$4>

R 12 . RfaKsT 12 <e, s4>

XRS3
l?EaFsT 13 ‘9,14>

R 14
FWUKST 14 <e: %4>

R lG Hfawsr 16 .0,14>

2s-
BSIISCL 14 <e, 3>

PI

I
I

r’
m

ae Rralrsl e .e:16>

RI WW21 ~ <0,16>

R2 2EQWS7 2 <21,16>

*3 REaEST 3 49:16>

F.* mal EsI 4 <a:ls>

es W.(XESJ 6 ‘0:16>

R6 Wars 6 <0,1s>

R7 2EG4EST 7 <e, 16>

F%mc
SUITCM R 8 uk-011E3T e ‘0,16>

IwTF4)CS
*9 ur.n~w v <e:t6>

R Ye RFlxEsx 92. 4.2:16>

u 11 REa KST 11 <0: 1S>

R 22 ~~ wrarsx %2 .e:>s,

XR%3 . 2CIXEST i3 .e:16>

R 1* ~WST 14 <6:1s>

R 16 . RI-OIFST 16 .e:ls>

Bsn esn2 R. 1s <0:3>

PI

PSI 12 <0:2+ J )=21 13 <0,24> I=SI 14 <e:24) PSI 16 <0:24>

●

ProcessorSwitch Interface 4/4 (PSINT4)



—

S1 L

s> L
ne

Re

I R%I R*

I
--JWx.

I

u-

~

!?4

UC
R6

R6
R6

R7
R7

me
R6

R9
R9

R 10
R 10

R 11

s

R 11

R %2
R~

x R *3
R 13

R 14
R 14

R 16
R 16

Bstl
Wns e.: 3>

P1<Y ,24*
19116

P1CI:?4J 1

UORCK9Z?3>

o x
I

?“
710 L

1 J

.
PROC Switch INTFACE (PSWINT)



\“,.--.

N’

m

=3_

o30m>

x

<L:O>U!!EI11
Ccleta:e>luw

ICIIU1
Lra9E

Ill
Ce?0to

m

r-= I91z

I
9

z

9
z“

---1%21
aI-wn

alWI

Il===’

.

*

—
*



v,
“.

.(1MSPId)

.

r<91=>LlsmemI
<91:0,91s31a3u

rrFFFF
<91W>

‘‘s”’~

IIYtaisu-II38310U*

●Iro-

c1Iti

xaIrl

S*10

●S10

610.

am

Etr

El
x2s10

1110

xar

IIr

●tr

la 6ra

H
●SIa

6ra

era‘rab=-=

%%’rat--i
minezm

Ku
30rkt9ra“XiH==l 3=9J-----4910

H
●ra”

9ra

●m

cra

zra

Iza

●raE

9ra

km

cra

zra

Ira

e10H

“al=-===
91a

b1a

cxa

zra

B

..
Kra

●la

9[a

●ra

cra

zra

1ra

●raE

-+-3=-

—--.

..



— —. 9
—-

‘1 96 ‘e:23’ - DX 16

J

01 16 z Is Dx 16
m cn

1

OX 16
ml Cn nI CTL m clL .nx m

mm e IDLE mm 9 lU.E nCll 10 Yc4E mm 11 IDLE mm 12 J(ILE

“ ‘n-p’; c“:-

E
01●

Dx1

m 2

m 3

01 4

01 6

mmDZ 6R70C

01 7 S141’rai

H“
D1e

01 9

x xe

x X*

112. X

1 13

01 z-

RECSEST e <a,16> 1 RCQIEST 9 .0:16> 1 SFOUZST je <e: 16> I REUEST Ii <0:16> I JIEem ST 12 .0:16> I IWWFST 13 <0:16> 6EQIEST 14 .e:ls> xEQllTS1 $6 *:16~ J

Processor Memory Switch 2/2 (PMSW2)



●

..—

L
6’
k

a

I 1 I

CTL.0:19
!

PZN
mloca. ~ PlmcsrL <0:3>

NmMORX

x

mu

I
I

PROC h4EM Switch (PMSMUX)

I

,



●

.
—

— —

16B1Z
4 BIT

m10 ENCCOCR
LRICM

s
lm33

iei65 ~ Pl?OCIQIT.cT:3> 1 T —
cn<e:ls>

0 16 131Te 0 FWTY L

CK X

* ‘i’” ‘“ O;” ‘o

“‘*
IOF16
MxOOu?

s 0
ufmr. e: Is> d

x

w

aJT<e:3>

Protocol Network (PROCOL)
..-

.

L“
-s



P%-.,>

--
_-—

<L.3:0>1u



.

CL1.2

xesZa

&tm

●rb

610

em

I’c)iI!mz10
wxld

-9m

910

*x0

sm.“

zm

tmt

e10

au

Id
9tra

*110

c;10

xZ110

*Lza

•~xa

610

era

!olxm<ra
wad

~9ra

910

●1(X

cla

zZa.

L10

●10

m

1“”+----l1’‘LA-----l ●1m.

Ctx(x

xat10‘

Stml

etm.

6xa

aXa.

WMXmdla
Swmx

w9xa.

9la

●ra

cIa

axa

1Ia

●10

00

.
.-—.——

—.—.——.



D— -.

I120 Is <12:22rItsO le <0:22~

r

El01 ●

ox 1

D1 2
H m ●

m 1,01 1

01 2

01 3

- nl 4

016

H
01 1

01 2

Dx 3 l----i., 3l-----+’ H
m 3

D1 4

01 6 H-=
01 4

01 6

01 6 !23!

01 7 al r=H 01 6

m &m
PRoc

Dx 72uxmU

u“’ 6 t-----+
n51 6 ,2!22>8E I

==FE%. 01 6 -n
P2ac

01 7 SUITOi

==3:: 01 a

01 9

m se El
D1 a

019

x le

1 *1

x *2

x 13

1 14 B ‘ 0 - !
mm ‘ 01 B 0x e

01 9 01 9 ox 9

ox *9 01 1* z 30

1 13 01 11 1 11

x 1*2X 01 12 x 1 12

z *3 01 $3 01 X3

01 14 I 14 z 14 B
m e

01 9

01 $s

1 *I

x 1%2X

ox 13

01 i4El
01a

03 9

01 le

1 11

or %2 x

01 13

01 24

H Dx $1

D1 12 x

Dx %3

‘sl ‘s ‘0’22’= 1 16
I

1

01 16

}

01 16

I

01 %6 I 116
PI

OX *6
PI PI Pz P1 PI

1

‘?7

●

Memory ProcessorSwitch 2/2 (MPSW2)



273

5. Summary

The LLL Programmable Digital Filter is a high-performance multiprocessor having general
purpose applicability and high programmability; it is extremely cost effective either in a
un iprocessoror a multiprocessorconfiguration.

The important systemcharacteristicsof the LLL Filter are as follows

- Multiple (16) identical processors execute independent instruction streams.

Every processingelement can uniformly addressall systemmemory through a (25-
bit serial) crossbarswitch.

- Each processingelement has dual private cachesto reduce contention for main
memory, to reduce average memory accesstime, and to insure that system
performance does not seriously degrade as more processing elements (and
therefore a bigger and slowerinterconnectionnetwork) are added.

- Each processingelementcan direct an interrupt to any other processingelement.

- Munch registers,hardware queues,and read-modify-write memory capability are
available for synchronization.

●

- The virtual-to-real memory maps include accessmode bits which allow efficient
sharing of data and instructions.

The architecture and instruction set of the individual processorhas been optimized with regard to
the multiple processorconfiguration. The important processorarchitecturefeatures are as follows

A very large (228 word) virtual addressspaceto allow each processorto uniformly
address any systemmemoryof feasiblesize in the forseeablefuture.

- Efficient mechanisms for allowing the qxecqtive to communicate with user
processes.

-’ A high-level instruction set ideally suited for compilers.

I - An instruction set specifically tailored to reduce the frequency of pipeline
interlocks in a high-performance implementation.

1’ .

- The capability to perform three-operand instructionsthrough the use of a unique
“T-field” descriptor. ~ ‘

I
- Comprehensive floating-point capability, including three rounding modes and the

option to trap on excesspre- or post-normalization.
1
1“ - The capability to directly perform operations on operands of 4 precision

quarter-word, half-word, single-word, and double-word.

- Special instructionsfor dealing with the multiprocessorenvironment.



●

●

I

I

I

I

1

I

I

274

6. References

Amdahl, G. M. 1967. “Validity of the single processor approach to achieving large scale
computing capabilities,” Proc. AFIPS .1967 $JCC, 30483-85.

Ball, J. R. et al. 1962. “On the useof the SOLOMON parallel-processingcomputer: Proc. AF/PS .
1962 FJCC, 22137-46. .

Barker, W. B. 1975. “A Multiprocessor Design; Bolt Beranek and Newman, Inc., Report BBN-
3126, October 1975,284 pp. .. . .

Carroll, A. B., and Wettierald, R. T. 1967. “Applications of parallel processing to numerical
weather prediction,” J. of the ACM, 14:591-614.

Flynn, M. J.*1966. “Very high-speed computingsystems:Proc. of the IEEE, M1901-9.

Harner-Hodges, K. J. 1973. “A Fault-Tolerant Multiprocessor Design for Real-Time Control,” ‘
Computer Design, July 1973, 75-81.

Kahan, W. 1973. “Implementation of Algorithms. Part 1.”,Technical Report 20, Department of
Computer Science,University of California, Berkeley,Californi% 1973, 339 pp.

Kaplan and Winder, 1973. ‘Cache-based Computer Systems:Computer, March, 1975, 30-36.

Katz, J. H.” 1970. “Matrix computations on an associative processor,” Parallel Processor Systems,
TecAno@gies, and Applications, L.C. Hobbs cd., Spartan Books,Washington, D.C., 131-49.

Minsky, M., and” Papert, S. 1971. “On some associative,parallel, and analogue computations,”
Associative Information Techniques, Elsevier, New York, New York, 1971.

Sedgewick, R. 1975. “Quicksort,” Report No. STAN-CS-75-492, Stanford University Computer
Science Department, May 1975, 352 pp.

Steele, G. L. 1975. “Multiprocessing compactifying garbage collection: Communications of the
ACM, September 1975, Vol. 18, No. 9,495-508.

*



275

Al. Abbreviations

This

ABS
ADD
ADR

BC
BOC
BR
BZ
BZC

c
CI
CK
Cl_R
ctlP
co
COIIPL
COND
Cs
CSA
CTL
CTR

DEC
OEST
01
01S
DO
LIP
DU

E
EBOX
EN
ERR
~;AR

EXP

:A
FS

G
GE

i BOX
I llMED
1NC
I ND

9

Sa list of the abbreviations u8ed throughout the deeign.

ABSOLUTE VALUE
ADDER
ADDRESS

BRANCH CONDITION
~j~N~~ES COUNT (FLOATING POINTI

BOTTOM ZEROES
BOTTOM ZEROES COUNT

CACHE
CARRY IN
CLOCK
CLEAR
COMPARE
CARRY OUT
COflPLEtlENT
CONDITION ,.
CHIP SELECT
CARRY-SAVE ADDER
CONTROL
COUNTER

DECREMENT
DESTINATION ,
DATA IN
01 SABLE
DATA OUT
DATA PARALLEL
DOUBLE-WORD

E SEQUENCER MICRO INSTRUCTION FIELO
~~;)(~jION BOX

ERROR
E130X WRITE ADDRESS REGISTERS
EXECUTION
EXPONENT

FUNCTION
FULL ADDER,
FROM SWITCH

GREATER THAN (ZEROI, CARRY GENERATE, GUARD
GREATER THAN OR EQUAL TO (ZEROI

HIGH (ONE), HIGH C51GNtF1CANCEl BITS
HALF-WORD ‘

INPUT
1 SEQUENCER MICRO INSTRUCTION FIELD
INSTRUCTION BOX
IllflEDIATE
INCREMENT
INDIRECT



“(ni-

Z0

—
_-—

—

aw
0auN0+

w

0-1L
u

zzoE
J

1-fnz
z0

.



a
-

1-N
.

●

mU
)

g
-0a

xo
-
l

d
<

IL
=
a
+

i.u
a

>
--
0
>

>
2

—
..—

x0
X
E

m

N

.

●

—



m<0IJJ

to3mum
c!um0t
-

C
r
J

-z01-

Z01-

ZLL
L

l
n0-1w

%Lwm
<!5C

)
zzzzumIdxl-”(
J
)
O

L
u
w

l-u41L
u-IAC3

z
z
-

--l

-.

u0
.

.

aIL0
ilium(n&

l
1-a(.J

zz

i-

●

.
.

.
x00a

.
..

—
.—

●



●

✎

●

●

I

1’

279

A3. P-Seauencer Micro-Code Fields

SOEST REG CTL<6:1>

* REG ADR !DEsT REG ADR<0:4> = “REG ACJRC6:4>”
001 % ! n = “IR<14:18>”
ADD ‘ =3, ! 11 = “SUM OF ABOVE TWO FIELDS”

$lBOX START ADR<8:11>

* da

$LAST START ADR

* =0
=1

SOPS READY WHEN IBOX DONE

*

$OUT SEL A

* REG
CONST

$OUT SEL B

* REG
CONST

$REG R ADR<8:4>

*

SREG W ADR<0:4>

*

$SRC REG CTL A<O:l>

*
REG ADR
OD
ADO

=0
=1

!SEJCTS THE SOURCE

!THE “OUT A“ LINES.

!SOURCE A REGISTER5 !IMflEOIATE CONSTAN1
!1S SET

!SELECTS THE SOURCE
!THE “fJJT Bn L]NESO

!s@JFfcE A REGISTER:! !IMMEOIATE CONSTANT
!1S SET

=0

=0

=0 !DON’T SET OPERAND

FOR THE READ-ONLY DATA

OR CACHE ADR IF C ADR SEL

FOR THE READ-ONLY DATA

OR CACHE ADR IF C ADR SEL

,.

=1 !SRC (A OR B) REC AOR=’’RECR ADR<0:4>”
=2 n =“OD REG ADR<O:4>”
=3 .; n =SUM OF ABOVE TWO FIELDS

b

,’



I

I

280
*

SSRC REG CTL B<O:l>

*
REG ADR
00
ADD

SSRC REG OUT SEL

001
* 002

$SET EWAR

*
‘1

P-Sequencer Micro-Code Fields A3

!DON‘
!sRc
!
!

T SET
(A fR

n

OPERAND
B) REG ADR=’’REG R ADR<O:4>”

=“00 REG i40R<0:4>”
=SUM OF ABOVE TWO F

!LET THE I SEQ CALCULATE THE 001 ACMjEss
! It II 002

1ELDS

=0
=1 !SET THE EBOX WRITE ADDRESS REGISTERTO THE

!oESTINATIONREG]STERAODRESS

.:

.

..

.



b
-

.
.

a

a~U
J

x0m

.-
0

.ma
a0

z
<

o
-
0
0

z*

anaK*

a1+*

*

.
—



282

A5. Pd3eauencer Micro-Code

!ool_REG,oo2=REG

!DEST.QH ,SRC l=QHS SRC 2=QHS a

,R (SW SRC); ! T-O
,;: ,R O(NOP) ;

“.

c1

D
S1 RT (A) ,R (SW SRC); ! T=l

, S1 ,R O(NOP):
‘. .

,R (SW SRC); ! T=2

‘O RT(A) ,~; RT(A) ,R O(NOP);

,R (SW SRC); ,!T=3
D RT(B) ,;: RT(BI ,R D(NOP);

b

a

i“ ,

b



1

!

I A5 P-Sequencer Micro-Code

I

‘1 !CI131.REG,0D2=REG

‘1 !oEsT& ‘
I SRC l=QHS SRC 2=QHS

● o ,s1 ,R O(SW SRC);

o ,S1 RT(A) ,R O(SW SRC);

D RT(A) , S1 ,RO(SWSRC);

O RT(B) , S1 ,RD(SW SRC);

●

! OEST.S SRC 1=0 SRC 2=S

,R (SW SRC);
o ,~;+N(l) ,R D(NOP);

S1 RT(A) ,R (SW SRC);
o ,S1 RT(A+l) ,R O(NOP):

.

,.’

S1 ,R (SW SRC);
ORT(A) ; ,S1+N(l) ,RD(NOF9;

,>
,R (SW SRC):

DRT(B) ‘ ,~;+N(l) ,R O(NOP);

! OEST=S SRC 1=S SRC 2=0

S1 ,R (SW SRC) ;
o ,R O(W2 REG);

S1 RT (A) ,R (SW SRC);
o ,R D(W2 REG):

S1 ,R (SUSRC);
O RT(A) ,RO(U2 REG);

S1 ,R (SW SRC):
DRT(B) ,R D(W2 REG);

! OEST.S SRC 1=0 SRC 2=D

,R (SW SRC);
o ,~;+N(l) ,R D(W2REG):

S1 RT(A) ,R (SW SRC);
o ,S1 RT(A+l) ,RD(W2REG);

,R (SUSRC);
D RT(A) ,~;+N(l) ,RD(W2 REG);

,R (SW SRC);
O RT(B) ,%+N(l) ,R O(W2REG);

283

! T=8

! T-1

!T=2

!T=3

! T=O

! T-l

! T-2

! T=3

! T=8

! T-2

,.
!T=3

b



●

284 P-Sequencer Micro-Code A5
!’

I

I !OD1=REG,002-REG

! DEsT=o SRC 1=S “SRC 2=s

yN(l) , S1 ,R (SW SRC),; ! T=O
,R D(NOP);

,,

D+N(l) ,S1 RT(A) ,R (SUSRC); !T=l
.0 ,R D(NOP);

,,.

D RT(A+l) , S1 ,R (SW SRC); ! T=2
D RT(A) ,R D(NOP);

-,..

A : Fm#) ,s1 ,R (SW SRC); ! T=3
,R D(NOP);

!DEST.D SRC l=D SRC 2=S
1
I DH+N (1 ) , S1 ,R (SW SRC); ! T=9

I D ,S1+N(l) ,R D(NOP);

DH+N ( 1 )
D

,S1 RT(A) ,R (SW SRC); ! T=l
,S1 RT(A+l) ,R D(NOP);

, DH RT(A+l) ,s1 ,R (SW SRC); ! T=2
I D RT(A) ,S1+N(l) ,R D(NOPI;

OH RT(B+l) , S1 ,R (SW SRC); ! T=3
I D RT(B) ,S1+N(l) ,R D(NOP);

*

! DEsT=D SRC 1:S SRC 2=0

DH+N ( 1 ) ,s1 ,R (SW SRC); ! T=O
o ,RDOJ2REG);

DH+N ( 1 ) ,S1 RT(A) ,R (SW SRC); ! T=l

* D ,R D(W2REG);

DH RT(A+l) , S1 ,R (SW SRC); ! T=2
D RT(A) ,R O(W2 REG);

OH RT(B+l) , S1 ,R (SW SRC); ! T=3
D RT(B) ,R O(W2 REG);

! DEST.D SRC l=D SRC 2=0

DH+N(l) ‘ , S1 ,R (SW SRC); ! T=@

D ,S1+N(l) ,R O(W2REG);

DH+N ( 1 ) ,S1 RT(A) ,R (SW SRC); ! T=l
D ,S1 RT(A+l) ,R D(W2REG);

OH RT(A+l) , S1 ,R (SW SRC); ! T=2
D RT(A) ,S1+N(l) ,RO(W2 REG);



A5, P-Sequencer Micro-Code

OH RT(B+l) , S1 ,R (SW SRC):
D RT(B) ,S1+N(l) ,RD(W2REG):

! DEsTeJJ SRC 1=4W SRC 2=D

S1
S1+N(l) ‘

DH+N(1 ) ,S1+N(2)
o ,S1+N(3) ,

●
S1 RT(A)
S1 RT(A+l)

DH+N(1 ) ,s1 RT(A+2)
o ,s1 RT(A+3)

S1
S1+N(l)

DH RT(A+l) ,S1+N(2)
D RT(A) ,S1+N(3)

S1
S1+N(l)

OH RT(B+l) ,S1+N(2)
0 D RT(B) ,S1+N(3)

,R (SW SRC);
,R (W2REG):
,R (NOP)\
,R D(NOP);

,R (SW SRC):
,R (W2REG):
,R (NOP) ;
,RD(NOP);

,R (Shl SRC):
f :J2P!EG);

,R D(NOP):

~R (SUSRC);
,R (W2REG);
,R (NOP):
,R D(NOP);

285

! T-3

!T=O

! T=2

! T=3

1’

l’” ,

I

I
1,

I

‘1

●



286 P-Sequencer Micro-Code A5

!-Jol=fqE-j,t3D2.f3EG

!DEST=4U SRC1=D $ SRC 2=0

OH , S1 ,R (SW SRC):
D+N(l) ,S1+N(l) ,R (W2REG);
D+N(Z) ,R (NOP);
D+N(3) ,R D(NOP);

,S1 RT(A) ,R (SW SRC);
~:N(l) ,S1 RT(A+l) ,R (W2REG);
O+N (2) ,R (NOP);
D+N(3) ,R D(NOP);

DH RT(A) , S1 ,R (SW SRC) ;
D RT(A+l) ,S1+N(l) ,R (W2REG);
D RT(A+2) ,R (NOP):
D RT(A+3) ,R D(NOP):

OH RT(B) , S1 ,R (SW SRC);
D RT(B+l) ,SI+N(l) ,R (W2REG);
D RT(B+2) ,R (NOP) ;
D RT(B+3) ,R DINOP);

!DEST=4W SRC 1=4W SRC 2=0

%+N(l)
DH ,S1+N(2)
D+N(l) ,S1+N(3)
D+N (2)
D+N (3)

DH
D+N(l)
D+N(2)
D+N (3)

6

DH RT(A)
D RT(A+l)
o RT(A+2)
D RT(A+3)

DH RT(B)
D RT(B+l)
D RT(B+2)
D RT(B+3)

S1 RT(A)
S1 RT(A+l)

,s1 RT(A+2)
,s1 RT(A+3)

S1
S1+N(l)

,SI+N(2)
,S1+N(3)

S1
S1+N(l)

,S1+N(2)
,S1+N(3)

,R (SW SRC);
,R (W2REG):
,R (NOP);
,R (NOP);
,R (NOP);
,R (NOP);

,R (SUSRC);
,R (W2REG);
,R (NOP);
,R (NOP);
,R (NOP);
,R D(NOP):

,R (SW SRC);
,R (W2 REG):
,R (NOP);
,R (NOP) ;
,R (NOP);
,R D(NOP) ;

,R (SW SRC);
,R (W2 REG);
,R (NOP):
,R (NOP);
,R (NOP):
,RD(NOP);

* !oE!3Tm4w SRC 1=0 SRC 2=4W

,R (SW SRC);
●

~i+N(l) ,R (LJ2REG);

!T=O

Y

,.

!T=l
-..

! T=2

! T=3

!T=l

! T=3

1’ ,

I
I



A5

I

1

I

I

●

*

OH
O+N(l)
O+N(2)
D+N (3)

~;N(l)
0+N(2)
D+N(3)

OH RT (A)
O RT(A+l)
D RT(A+2)
D RT(A+3)

OH” RT(B)
D RT(B+l)
o RT(B+2)
o RT(B+3)

P-Sequencer Micro-Code

,S2+N(2)
,S2+N(3)

S1 RT(A)
S1 RT(A+l)

,S2+N(2)
,S2+N(3)

~;+N(l)
,S2+N(2)
,S2+N(3)

S1
S1+N(l)

,S2+N(2)
,S2+N(3)

,R (NOP);
,R (NOP) ;
,R (NOP) :
,R (NOP) ;

,R (SUSRC):
,R (W2REGI:
,R (NOP);
,R (NOP);
,R (NOP):
,R D(NOP) ;

,R
,R
,R
,R

::0

(SU SRC):
(W2 REG);
(NOP) ;
(NOP) :
(NOP) ;
(NOP) s

,R (SUSRC);
,R (U2REG);
,R (NOP):
,R (NOP):
,R (NOP);
,R O(NOP);

287

!T=l

! T=2

! T=3



●

288 P-Sequencer Micro-Code A5

!ooi .REG, 0D2.(3ENERAL

! DEST.QH SRC l=CIHS SRC 2=QHS

,R (SW SRC);
D , :! ,R D(NOP);

S1 RT(A) ,R” (SW SRC):
o , S1 ,R D(NOP);

B

,R (SW SRC);
O f/T(A) ,~$ RT(A) ,R O(NOP);

I ,R (SW SRC)\
D RT(B) ,~i RT(B) ,R CI(NOP);

!T=9

,’

!T=l ..

! T53 !’

i“

,

I

9



A5 P-Sequencer Micro-Code 289

‘!OD1=REG,0D2=GENERAL

!DEST=S SRC 1=(IHS SRC 2=IIHS

D , S1 ,R D(SW SRC) ; ! T=@

D ,S1 RT(A) ,R D(SW SRC); ! T=l

D RT(A) , S1 ,R D(SW SRC): ! T=2

D RT(B) ,s1 ,R D(SW SRC); ! T=3

!DEsT=s SRC l=D SRC 2=S

,R (SW SRC); ! T=O
D ,;~+N(l) ,R D(NOP);

,.
S1 RT(A) ,R (SWSRC): !T=l

D ,S1 RT(A+l) ,R D(NOP);
,,

S1 ,R (SW SRC): ! T=2
D RT (A) ,S1+N(l) ‘ ,RD(NOP):

,R (SW SRC): ! T-3
D RT(B) ,~:+N(l) “ ,R D(NOP) ;

*

! DEST.S SRC 1 =S SRC 2=D

si ,R (SW SRC): ! T=@
D ,R D(W2 SRC);

D

D RT(A)

b

D RT(B)
. .

1’ D

D

I O RT(A)

‘1
I .

DRT(B)

S1 RT(A) ,R (SW SRC); ! T=l
,R D(W2 SRC):

S1 ,R (SW SRC): ! T=2
;R D(W2 SRC);

S1 ,R (SLISRC); !T=3
,R O(W2 SRC);

SRC l=D SRC 2=0

,R (SW SRC); ! T=O
,~i~N(l) ,R D(W2SRC):

“S1 TIT(A) ,R (SW SRC): ! T=l
,S1 RT(A+l), ,R O(W2 SRC);

,R (SW SRC); ! T=2
,~:+N(l) ,R D(W2SRC);

,R (SW SRC): ! T=3
,~i+N(l) ,R D(W2SRC):

I



290 1 P-Sequencer Micro-Code A5

! 001 =R*EG, 0D2-GENERAL

!DEsTsJJ SRC 1=s SRC 2=S
(:

O+N(l)
D(1)

, S1 ,R
,0

# O+N(l) ,S1 RT(A)
D(1) :!

D RT(A+l) , S1 ,R
D RT(A) ,0

D RT(B+l) , S1 ,R
D RT(B) ,0

! DEST.D SRC 1=0 SRC 2=S

(SW SRC); !T=O’
(NOP) ;

(SW SRC); ! T=l
(NOP) ;

(SwSIjc); ! T-z
(NOP) ; -9

(SW SRC); ! T=3
(NOP) ;

OH+N ( 1 ) , S1 ,R (SW SRC);
D ,S1+N(I) ,R D(NOP):
DH+N ( 1 ) ,S1 RT(A) ,R (SWSRC);
D ,S1 RT(A+l) ,R D(NOP);

OH RT(A+l) , S1 ,R (SW SRC);
O RT(A) ,S1+N(l) ,R D(NOP):

OH RT(B+l) , S1 ,R (SW SRC);
D RT(B) ,sl+N(i) ,R D(NOP):

!OEST=D SRC 1=S SRC 2=D

DH+N ( 1 ) , S1 ,R (SW SRC);
,0 ,R D(W2 SRC);

DH+N ( 1 ) ,S1 RT(A) ,R (SW SRC);
D ,R D(W2 SRC);

DH RT(A+l) , S1 ,R (SW SRC);
‘D RT(A) ,R D(W2 SRC):

OH RT(B+l) , S1 ,R (SIJ SRC);
D RT(B) ,RD(W2SHC):

! DEST.D SRC l=D SRC 2=D

DH+N ( 1 ) , S1 ,R (SW SRC):
D ,S1+N(lI ,R D(W2SRC);

DH+N(l) ,S1 RT(A) ,R (SW SRC);
D ,S1 RT(A+l) , ,R D(W2 SRC);

DH RT(A+l) , S1 ,R (SW SRC);
i) RT(A) ,S1+N(l) .,R D(lJ2 SRC);

DH RT(B+l) ,s1 ,R (SW SRC);#

! T=@

!T=l

! T=3

!T=O

! T=l

!T=2

!T=3

!T-1

! T=2

! T=3



C
y

..
..

-
..

Gi3
am

.-..
u

)
u

)--

Z
W

%
k

Ln
xzz

----

0

Zzi
a
a

-
-
-
-

m
u

3--
n

-a
=

SJo
o

C
J33ZZ

----

n
0a

.
a
c
a
a

.
.
-
.

a
a

a
a

.-.
.

fxm
n

za
.

.
.

.

---
4(V

V
J

-+
+

+
au

aa
----

---
+

(N
K

I
---

---
4(N

JC
O

---
l-

l-l-+
ac

aa

r
n-

“m&
-

zsno

a
*a
s00

a
i
-a

x00
n

4

.

●

—
.—

—
—

—
—

—
—

--
.—

.



292 P-SequencerMicro-Code

!Ool=REG.0D2=13f34f33/d-

!DEsT=41,J SRC

DH
D+N(l)
D+N (2)
D+N (3)

DH
D+N(l)

● D+N(2]
D+N(3)

“ DH RT(A)
O RT(A+l)
o RT(A+2)
IIRT(A+3)

DH RT(B)
O RT(B+l)
D RT(B+2)
D RT(B+3)

9

!DEST=4W SRC
●

~!N(l)
i’ D+N(z)

D+N(3)

DH
O+N (1)
D+N(z)

* D+N(3)

DH RT(A)
D RT,(A+l)
D RT(A+2)
D RT(A+3)

DH RT(B)
I D RT(B+l)
I D RT(B+2)

I D RT(B+3)

!DEST=4W1 SRC

1=0 SRC 2=D

, S1 ,R (SW SRC);
,S1+N(l) ,R (W2SRC);

,R (NOP);
,R D(NOP);

,S1 RT(A) “,R (SW SRC);
,S1 RT(A+l) ,R (W2 SRC):

,R (NOP);
,R D(NOP);

,S1 ,R (SWSRC);
,S1+N(l) ,R (W2SRC);

,R (NOP);
,R D(NOP);

,s1 ‘ ,R (SW SRC);
,S1+N(l) ,R (W2SRC);

,R .(NOP);
,R”’D(NOP):

1=4W ‘ SRC 2=0

S1 ,R (SIJSRC):
S1+N(l) “~R (W2SRC);
,si+N(2) :R (NOP);
,S1+N(3) ,R (NOP);

,R (NOP);
,R D(NOP);

S1 RT(Aj ,R (SW SRC
S1 RT(A+l) ,R (W2 SRC
,s1 RT(A+2) ,R (NOP);
,s1 RT(A+3) ,R (NOP);

,R (NOP);
,R D{NOP);

S1 ,R (SW SRC
S1+N(l) ,R (W2SRC
,S1+N(2) ,R (NOP);
,S1+N(3) ,R (NOP);

,R (NOP);
,R D(NOP);

:
:

:
:

S1 ,R (SW SRC);
S1+N(l) ,R (W2SRC);
,S1+N(2) ,R (NOP);
,S1+N(3) ,R (NOP);

,R (NOP);
,R D(NOP);

1=0 SRC 2=4W

S1 ,R (SW SRC);
S1+N(l) ,R (W2SRC);

A5

!T=O

.

.

!T=l

-.\

!T=2

!T-3

!T=O

!T=l

!T=2

!T=3

!T=O



A5 ‘ P-SequencerMicro-Code

OH
D+N(l)
O+N(2)
D+N (3)

OH
D+N(l)
O+N(2)
O+N(3)

OH RT (A)
D RT (A+l)
D RT(A+2)
D RT(A+3)

OH RT(B)
D RT(B+l)
D RT(B+2)
o RT(B+3)

, N(001)
,N(OO1)

S1 RT(A)
S1 RT(A+l)
,N(OO1)
,N(001)

:!+N(l)
,N(OD1)
,N(001)

S1
S1+N(l)
,N(001)
,N(001)

,R (W3 SRC);
$ W&RC)\

,RD(NOP):

,R (SW SRC):
,R (W2SRC):
,R (W3SRC);
,R (W4SRC);
,R (NOP);
,RO(NOP):

,R (SW SRC):
,R (W2SRC):
,R (W3SRC);
,R (W4 SRC);
,R (NOP)\
,R O(NOP):

,R (SW SRC);
,R (W2SRC);
,R (W3SRC);
,R (U4 SRC):
,R (NOP);
,RD(NOP);

293

!T=l

!T.2

!T=3

.

I

l“



294 P-SequencerMicro-Code A5\

!OD1=GENERAL ,0D2=REG

! DEST=QH SRC l=QHS ~, SRC2=QHS

S2 ,R (SWSRC); !T=@
N(OO1) ,0 (IJlSRC OEST): v

S1 RT(A) ,R (SIJSRC); !T=l
N(001)

..
,0 (SW DEST);

,R (SW SRC); !T=2
O RT(A) ,% RT(A) ,R D(NOP);

“-.

,R (SW SRC): !T=3
● D RT(B) ,% RT(B) ,R O(NOP);



●

@

I

i’

I

I
,1

1

I

●

. .

A5 P-SequencerMicro-Code 295

!oD1=GENERAL,002=REG

! OEST=S SRC l=QHS SRC 2=QHS

S2 ,RO(SWSRC OEST); !T=O

SI RT(AI,S2 ,;RD(SWDESTI: !T=l

O RT(A) ,S2 ,RO(SWSRC); !T-2

, ORT(B) ,S2 ,RO(SWSRC); !T=3

!OEST.S SRC 1=0 SRC 2=S

,R (SW SRC); !T=O
.ifool)~ ,E (W2SRC);
N (001) ,0 (WFOEST):

S1 RT(A),S2 ,R (NOP); !T-l
S1 RT(A+l) ,RO(SWOEST):

,R (SUSRC): !T=2
0 0 RT(A) ,i?fool) ,R D(W2 SRC);

,R (SW SRC); !T=3
O RT(B) ,i%ool} ,R O(W2 SRC):

!DEST=S‘ SRC.1=S SRC 2=0 “

S2 ,E (SW SRC): !T=O
S2+N(1) ,RO(U1 OEST):

S1 RT(A),S2 ,R (NOP); !T=l
S2+N(1) ,R O(SW OEST):

,R (SW SRC)J !T=2
O RT(A) ,%+N(l) ,R D(NOP);

,R (SW SRC); !T=3
D RT(B) ,%+N(l) ,R D(NOP);

! DEST.S SRC l=D SRC2=0
●

S2 ,R (SUSRC); !T=$
s2+N(1) ,R (W2SRC);
N (001) ,0 (UF OEST);

S1 RT(A),S2 ,R (NOP); ~T=l
S1 RT(A+1),S2+N(1),RO(SWDEST);

D RT(A) ,%+N(l)
,R (SW SRC): ~T=2
,R II(W2SRC);

,R (SW SRC): !T=3
O RT(B) ,%+N(l) ,RO(W2SRC);



296 P-SequencerMicro-Code A5

!OD1’=GENERAL,002=REG

!DEST.D SRC 1=S SRC 2=S
~

S2 ,R (S2DEST): !T=O
D (WF SRG DEST); 4

S1 RT(A),S2 ,R (S2DEST); !T=l .,
D (WFDEST);

D RT(A+l) ,S2 ,R (SUSRC); !T=2
D RT(A) ,D (NOP);

---

D RT(B+l) ,52 ,R (SW SRC); !T=3
D RT(B) ,0 (NOP);

! DEST=D SRC 1=0 SRC2=S

52,.
N(OD1)
N(OD1) ~

,R (SW SRC); !T=@
,R (W2 SRC DEST):
,0 (WF DEST);

H ,s1 RT(AI,S2 ,R (S2 DEST); !T=l
S1 RT(A+l),N(ODI),RD(UFDEST);

4 DH RT(A+l) ,S2 ,R (SW SRC); !T=2
D RT(A) ,N(OO1) ,RD(hJ2SRC);

,R (SW SRC); !T=3
,R D(W2 SRC);

!DEST=D SRC 1=S SRC 2=0

S2 ,R (SW SRC): !T=@
S2+N(1) ,R (W2 SRCDEST);

D“ (UF DEST);

b S1 RT(A),S2 ,R (S2DEST); !T-1
S2+N(1) ,R D(WF DEST):

D1-fRT(A+l) ,S2 ,R (SW SRC); !T=2
I D RT(A) ,S2+N(1) ,R D(NOP);

OH RT(B+l) ,52 ,R (SW SRC): !T=3
D RT(B) ,S2+N(1) ,R D(NOP);

!DEST.D SRC 1=0 SRC2=0

,R (SW SRC); !T=O
%+N (1)1 ,R (W2 SRCDEST);
N (001) ,0 (WF DEST);

‘H ,s1RT(A),S2 ,R (S2 DEST); !T=l
S1 RT(A+1),S2+N(1),RD(WFDEST);



N:

C
+

J

)-

4:-.
.

.
.

.
1-

..
-.

-
-.

..
.-

.-
.-

..
..

..
-

.-
.*

0

a
a
a
a

.
.
.
.

c
c
a-.

C
C
c
c
c
m
o

.
.
.
-
.

a
a
w
o

.
.
-
*

s+
---

4
--

.-l
l-l-+

+
c
x
a
u
a

-A
d

d
Z
o
o
o

+
0
0
0

~
N

---

L
n
C
o
z
z
z

2
N

&
m
m

4
4

4
A

C
n
u
lc

n
m

.
.

.
.

.
.

.
.

.

4

z’a.-<&
-

a+
a

sn
o

x
x

●

—
—

.



●

I 298, P-SequencerMicro-Code A5

,.
001=GENERAL,002 =REG

,
.’

DEST=4W SRC 1=0 6RC 2=0

H ,S2 ,R (SW SRC DEST); ‘
S2+N(1) ,R (W2 SRC OEST):
N(OO1) ,E (W3DEST);
N (001) ,0 (W4 DEST);

H ,s1 RT(A),S2 ,R (SW OEST); !T=l
S1 RT(A+1),S2,R (W2OEST);
N (OD1) ,E (W30EST):
N (001) ,D (W40EST);

OH RT(A) ,s2 ,R (SW SRC): !T=2
O RT(A+l) ,S2+N(1) ,R (W2 SRC):
o RT(A+2) ,N (001) ,E (NOP);
o RT(A+3) ,N (001) ,0 (NOP);

!Dp5T.41J

OH RT(B)
O RT(B+l)
o RT(B+2)
D RT(B+3)

I
.

9

SRC 1=4W

,s2
,S2+N(1)
,N(OO1)
,N(001)

SRC 2=D

,R (SW SRC); !T=3
,R (U2 SRC);
,E (NOP):
,0 (NDP);

S2 ,R (SW SRC); !T=O
S2+N(1) ,R (W2 SRC);
N(OO1) ,R (W3SRC):
N(OO1) ,R (W4 SRC);
N(OD1) ,E (WF3 DEST);
N (001) ,E (W2DEST);
N(OO1) ,E (W3 DEST);
N(OO1) ,D (W40EST);

S1 RT(A),S2 ,R (NOP); !T=l
S1 RT(A+1),S2+N(1),R (NOP);

H ,S1 RT(A+2),N(OD1) ,R (SW OEST);
S1 RT(A+3),N(O01) ,R (W2 DEST);
N(OO1) ,E (W311EST):
N(OD1) ,D (W4 DEST):

S2 ,R (SW SRC); !T=2
S2+N(1) ,R (W2SRC);

OH RT(A) ,N(OO1) ,R (W3 SRC):
O RT(A+l) ,N (002) ,R (W4 SRC);
o RT(A+2) ,E (NOP);
D RT(A+31 ,0 (NOP);

S2 ,R (SW SRC); !T=3
S2+N(1) ,R (W2SRC);

OH RT(B) ,N (001) ,R (W3SRC);
O RT(B+l) ,N (002) ,R (W4 SRC):
D RT(B+2) ,E (NOP);
o RT(E!+3) ,0 (NOP);

!T=@

!_JEf3T=4w SRCl=D SRC2=4W



.-
..

.-
..

..
------

--1
-1

-1
-1

-
f-)u

rn
m

rn
c

n
C

c
c

iJJIA
ILu

&
l

C
n

c
n

n
n

o
n

a
a
a
a
u
m

.
.
.
.
.
.

---
d

N
@

3--
.---&
Z

zzo
n

+
+

+
0

0
lN

m
JIN

c
v

--
U

-J
m

m
c
m

zz

..
..

..
-

..
------

--l-l-+
h

-
Lc

Lm
c

n
m

(n
00

L
U

L
L

IU
W

Z
zo

o
o

o
---.d

a
a

u
o

z“---
&

-+<
u

.
-

--~
1

-
1

--
a
a
~

d
d

c
w

03u
lc

n
.

r’?)--
-4

4
2

0
0

+
0

0
N

--
m

zz

s

●

a
a

a
a

u
o

am
aauo

.
.

..-.
..

.
.

.
.

.

---
---

d
lw

m
.+

(U
R

I
---

---

~
~

~
Z

zz
N

N
N

N
+

+
+

(.n
C

n
m

rn
N

N
N

N
L

o
m

c
n

u
l

.
.

.-

.’

---
.+

N
C

+
)

m
+
+
+
.

-
m
m
m

i
-
-
-
-

m
l
-
+
l
-

aaa
xn

o
o

o
●

.
●

.
—

-—



300 P-SequencerMicro-Code A5

001=GENERAL,O02=GEMRAL

DEST=QH SRC l=QHS SRC 2=IIHS
,

E (SW SRC); !T=9
N(001) ,R (SWSRC);
N(OD1) ,R D(W1 SRC DEST);

S1 RT(A) ,R (SW SRC); !T=l
N(OD1) ,R D(SW SRC DEST);

E (SW SRC); !T=2
N (OD1i ,R (SW SRC);

O RT(A) ,S1 RT(A) ,R D(NOP)

E (SW SRC); !T=3
N (001) ,R (SW SRC):

D RT(B) ,S1RT(B) ,R D(NOP)

b

““*

,.
I

I



A5 P-SequencerMicro-Code 301

!ODI=GENERAL,D02=GENERAL

!DEST.S SRC l=QHS SRC 2=CIHS

. .E (SUSRC): !T=O

D RT(A)
I

!
b D RT(B)

!DEsT& SRC 1=0

D RT(A)

D RT (B)

! DEST.S SRC 1=S

O RT(A)

~. D RT(B)

I

!DEST.S SRC 1=0

N(OD1) ;RO(swsRCOEST): .

S1 RT(A) ,RD(SWSRC); !T-l
N(OD1) ,D (SW DEST)\

E (SW SRC); !T=2
,N(001) ,R D(SW SRC):

E (SW SRC): !T=3
,N(OD1) ,R D(SW SRC):

SRC 2=S

E (SUSRC); !T=@
N(OD1) ,R (SWSRC);
N(OD1) ,R (W2SRC):
N(OD1) ,0 (UFDEST);

S1 RT(A) ,R (SW SRC): !T=l
S1 RT(A+l),N(OO1),RO(SWOEST);

E (SW SRC): !T=2
N(OD1) ,R (SW SRC);
,N(001) ,R (IJ2SRC):

E (SW SRC): !T-3
N(OD1) ,R (SUSRC);
,N(OD1) ,R (W2SRC);

SRC 2=D

E (SW SRC): !T=@
N(OO1) ,R (SW SRC);

R (W2 SRC);
N(001) ,0 (U1DEST):

S1 RT(A) ,R (SW SRC): !T=l
,R (W2SRC);

N(001) ,0 (SW OEST);

E (SW SRC); !T=2
N (001) ,R (SW SRC);

,R D(lJ2SRC)\

E (SW SRC); !T=3
N(OD1) ,R (SW SRC):

,R D(W2 SRC)\

SRC 2=D



302

.

D RT(A)

D RT(13)

*

P-SequencerMicro-Code A5

E (SWSRC); !T=@
N(OO1) ,R (SWSRC);

E (W2SRCI;
N(OO1) ,R (W2SRC):
N(OO1) ,D (WF DEST);

S1 RT(A) ,R””(SW SRC); !T=l 6

EUo;~,(A+l) ,R (W2SRC);
,D (WF CIEST):

E (SW SRC); !Ti2
N(OD1) ,R (SW SRC);

-x

E (W2 SRC);
,N(OD1)

,’
,RD(U2SRC);

E (SU SRC); !T=3
N(OD1) ,R (SWSRC);

E (W2 SRC):
, N (001) ,R O(W2 SRC):

I

o



C
g

8
-IB

1
-

.
.

-.
-

-.
-.

-.
..+

-
-Lc

ll-
(JU

U
3

C
o

ld
(n

o

=iE
L

L
m

-x
-.

..
..

.-
.-

..
..

----
..

..
..

..
.-

----
-.-k

-l-
U

u
m

m
C

C
1.u

l.u
rx)u

)c
a

n

----
..

.-
.-

---
U

U
C

J
a
a
a

(.c
l

U
3rn

X
X

(N
U

3U
33

---

.-
.-

..
---
rJtic

J
a
a
a

C
O

U
3U

3

~
3g

---

..
..

-
---
C

Jg
g

m
o
m

3ZN
L13L133.
---

0
.

l.IJc
Ea

.
.

-i-+
L.IU

-IU
-.J

U
1l.1u

.1
f
.
n
o
n

a
‘-n

w
a
o

u
a
n
.

.
u
a
a
-
.

I
A
l
x
n
c
w
o

.
.

.
.

.

is0z.

d
-+a
<
-
-

l-kam
o
n

z
.

d
-+~

=
-

t-
i-d

a
a

o
0

4
4

-
(JIO

3Z

u
-
-

--G
z

0
0
-
.

Zz

d00z.

--
--

--
F

s
0z.

----
4

4
4

4
0
0
0
0

0
0
0
0

-
-
-
-

Z
z
z
z

z
Z

z

.-4A
.

-
“+

m
m
-
-

E
L

l
i
l-

-
m

&
-

al-
a

x0
0

K
l-

U
z0
0

0
0

m<
“. zo-.

.

-.

9



I

I 304 P-SequencerMicro-Code
●

E (SW SRC);
OH RT(B+l) ,N(OO1) ,R (SW SRC):
D RT(B) ,R D(W2 SRC);

!oEsT.f) SRC l=D SRC2=D
e

E (SW SRC);
N (0011 ,R (SW SRC);

E (W2 SRC):

A5

!T=3

!T=O

N(OD1) ,R (WZSRC bEsT);
N (001) ,D (WF DEST);

%.

S1 RT(A) ,R (SW SRC);
S1 RT(A+l) ,R (W2SRC);
N (OD1) ,E (S2DEST);
N(001) ,D (WFDEST);

!T=l

E (SW SRC); !T=2
N(OD1) ,R (SW SRC);

DH RT(A+l) ,E (W2SRC);
D RT(A) ,N(OD1) ,RD(W2SRC);

N(001)
DH RT(B+l)
D RT (B) ,N(DD1),

E (SW SRC); !T=3
.R (SW SRC):
;E (W2 SRC);
,R D(W2 SRC);

!DEST,=D SRC 1=4W SRC 2=0

E (SW SRC): !T_O
N(OD1) ,R (SW SRC);

E (W2 SRC);
N (001) ,R (W2SRC);
N(OD1) ,R (W3SRC);
N(OD1) ,R (W4SRC);
N(OD1) ,E (WF2DEST);
N(OD1) ,0 (WF DEST);

S1 RT(A)’ ,R (SW SRC); !T=l
S1 RT(A+l) ,R (W2SRC);
S1 RT(A+2),N(OD1) ,R (S2DEST);
S1 RT(A+3),N(OD1) ,R D(WF DEST);

E (SW SRC); !T=2
N(OO1) ,R (SW SRC);

E (W2 SRC);
N(OD1) ,R (W2SRC);

OH RT(A+l) ,N(OO1) ,R (W3SRC);
D RTtA) ,N (001) ,R (W4 SRC);

E (SW SRC); !T=3
N (OD1) ,R (SW SRC);

,,

, E (W2 SRC);
N(001) ,R (W2SRC);

~HRf?~?y+l) ,N(OD1) ,R (W3SRC);
,N(001) ,R (W4SRC); “,.



*

A5 P-Sequencer Micro-Code 305,

!001=GENERAL,002=GENERAL “ ~

!DEST.4U SRC 1=0 ‘ SRC2=0 .,

*

I

I

I OH RT(A)
O RT(A+l)1

I
D RT(A+2)
o RT(A+3)

I

* OH RT(B)
O RT(B+l)
D RT(B+2)
o RT(B+3)

N (001)

N(OO1)
N(OO1)
N(001)
N(OO1)
N(OO1)

S1 RT(A)
S1 RT(A+l)
N(OO1)
N(OO1)
N(OO1)
N(OO1)

N(OD1)

,N(OD1)

N(OO1)

,N(001)

E (SW SRC); !T-o
,R (SWSRC);
E (lJ2SRC):
,R (W2SRC);
,E OJFDEST):
,E (W2DEST);
,E (W3 DEST);
,0 (W4 OEST);

,R e(SWSRC); !T=l
,R (W2SRC);
,E (SW OEST);
,E (W2DEST);
,E (W30EST);
,0 (W4 DEST);

E (SW SRC);
,R (SW SRC);
,E (W2SRC);
,R (W2SRC);
,E (NOP):
,0 (NOP):

E (SW SRC);
,R (SW SRC);
,E (W2SRC);
,R (W2SRC);
,E (NOP);
,D (NOP);

!OEST*4W SRC 1=41J SRC2=0

* E (SWSRC):
N(001) ,R (SWSRC);

E (142SRC);
N(OO1) ,R (W2SRC);
N(OO1) ,R (W3SRC);
N(OO1) .R (W4SRC):

!T=2

!T-3

!T-$

N (OD1) :E (WF4-OEST);
N(OD1) ,E (W2DEST);
N(OD1) ,E (W3DEST);
N(OD1) ,0 (IJ4DEST);

. S1 RT(A) ,R (SIJSRC); !T=l
S1 RT(A+l) ,R (lJ2SRC):

H ,S1 RT(A+2),N(OD1),R (SW DEST);
S1 RT(A+3),N(O01),R (W20EST);
N(OD1) ,E (W3DEST):
N(001) ,0 (W4DEST);

E (SIJSRC);
N (001) ,R (SW SRC):

E (lJ2SRC);
N (001) ,R (W2SRC):

OH RT(A) ,N (001) ,R (IJ3SRC):



306 P-SequencerMicro-Code A5

,, D RT(A+l) ,N (001) ,R
D RT(A+2) ,E
D RT(A+3) ,D

,,
N(OD1) ,;

N(001) ,:
OH RT(B) ,N (001)
D RT(B+l) ,N (OD1) ‘:;
o RT(B+2) ,E
D RT(B+3) ,0

!DEST*4W SRC 1=0 SRC2=4W

N(001)

N(OO1)

N(OO1)
N(001)
N(001)

b N(001)

4
S1 RT(A)
S1 RT(A+l)

N(OO1)
N(ooi),
N(001)
N(OO1)

I N(OO1)

N(OO1)
IOH RT(A)
O RT(A+l)
o RT(A+2)
o RT(A+3)

N(OO1)

N(001)
OH RT(B)
D RT(B+l)!.
D RT(B+2)

I
D RT(B+3)

(W4 SRC);
(NOP);
moP) :
(SW SRC);
(SW SRC);
(W2 SRC);
(W2 SRC);
(W3 SRC);
(lJ4SRC);
(NOP);
(NOP);

E (SkJSRC);
,R (SW SRC);
E (W2 SRC);
,R (IJ2SRC);
.R (W3SRC):

,R
,R
,R
,R
,E
,E
.E
;0

E

,R
,R
,R
,E
,0

!T53

!T=O

(W4 SRC);
,(WFDEST);
(W20EST):
(W3 OEST);
(W4 OEST):

(SW SRC); !T’=l
(W2 SRC);
(W3 SRC);
(W4 SRC);
(SW DEST):
(W2 OEST);
(lJ3OEST);
(W4 OEST);

(SW SRC); !T=z
(SU SRC):
(W2 SRC);
(W2 SRC);
(W3 SRC);
(W4 SRC);
(NOP);
(NOP);
(SW SRC); !T=3
(SW,SRC);
(W2 SRC):
(W2 SRC):
(W3 SRC):
(W4 SRC);
(NOP);
(NOP);

●



307

●

A6. I-Seauencer Micro-Code Fields

$ADD F<0:5>

* A+@
A+l
A+B
A+B+l
A-B-1
A-B
A*2
A*2+1
A-1

NA
NA AND B
NA AND NB

iA OR B
B
A XNOR B
A AND B
NA OR NB
A XOR B
NEI
A AND NB
P/~hJSBONE

A OR NB
A

$ADO LEG A<O:l>

*
INDEX REG
LSI 11

$ADD LEG 6<0:2>

*
so
VAR BASE
FIX BASE
; BLOCK ADR

0

●

!

=0
=1
=12
=13
=18
=19
=24
=25
=30

=32
=34
=36
=38
=40
=42
=44
=46
=48
=50
=52
=54
=56
=58
=60
=62

=0
=1
=2
=3

=0
=1
=2
=3
=4
=7

!ADoREssARITHflETICADDER FUNCTION LINES
!(F<O> IS THE MOOE CTR, F<1:4> IS THE FUNCTION
! ANO F<5> IS THE CARRY IN)

!coNTRoLsLEG A ON ADORESS ARITHMETIC ADDER

!~RE.FETcH Pc, USEOQY INSTR QUEUE LOGIC
!INDEXREG FILE.
!oATA FRoflLsI_ll
!wRITEDATA Bus. ONLY USED BY HARDWARE

!CONTROLSLEG B ON AOORESS ARITHMETIC ADDER.

!BRANCH f+f+jI=T FOR SHORT Pc RELATIVE BRANCHES
!SHORT OPERAND OFFSET
!VAR]ABLE BASE OFFSET
!FI)(ED BASE OFFSET
!CACHE MISS BLOCK AOORESS
!T REGISTER

I \



308 I-SequencerMicro-CodeFields A6

SADD LOAD IND REG

I * =0
=1 ‘

I 8ADD RIGHT SHIFT 8 BITSI

*

SC ADR’SEL

*

~ CLEAR HOLD MISS

*

SC FETCH

*

SC OPERATION

*

$C W CHECK

*

SC W SET NUfl<O:l>

*,

=0
=1

=0
=1

=0
=1

%

=0
=1

=0
=1

=0
=1
=2
=3

!LoAD THE INDIREcTBIT AND INDEX REGI$TER FIELD
!FRoflTHE IND]REcT ADDREss polNTER COMMING OUT
!oF THE INoE)(REGIsTER FILE lNTo A SPECIAL
!REGIsTERFoR THEf10 J

!R]GHT sHIFT THE olJTplJToF THE ADORESS 4

!ARITHMETICADDER BY 8 BITS.

!ALLowLoNG IflflEo]ATEcoNsTANTS TO BE USED
!FEEo THE cAcHE ADDREss INTO THE LONG IMMEDIATE
!coNsTANTFIELD oF THE “olJTA“ AND “OUT B“
!MuLTIfJLE)(ERs

!cLEAR THE HoLD cAcHE MISS REGISTER

!THE clJRRENTMEfioRyREAD IS FETCHING AN INSTR

!THE cuRRENT flIcRoINsTRIJcION1S USING THE CACHE

!cHEcK THE cAcHE To sEE IF A WORD IS THERE SO
!THAT IT MAY BE WRITTEN IN THE FUTURE

!spEc]FIEsA spEcIFIc cAcHE sET TO BE WRITTEN
!INTO. THIS 1S ONLY USED BY DIAGNOSTIC PROGRAMS



a0z
mKwin

z

=
!+

A
+

u..>
rsJm

<
0
a
t
o
l
J
-

<
-

a
~

a
m

Iti!u
..

IJJ
A

l-
+

Ln..
-

m
c

l

:&
’

LLl
m

u
)

ium

..
..

..
A

A
A

d
d

d

i.u
il.liu

LfJU
-)c

n
cc”
U

Jc
n

m
u

32<
-

u
-l

-.
-.

----
-.

c
)
zo-J

c
1

IJJ
a

0
C
C
4
5
?

o
>
-

3
.

c
1IQax0m*

t-

(Jx0m
*Z

●

✎

*
*

—



310 I-SequencerMicro-CodeFields A6

,81NSTR OUT A
.,

* =0
si !sA’fsTHATAN ]NsTRIJCTIONIS BEING READ

!olJTOF “OUT A“, AND TO PUT IT IN THE
!INSTRUCTIONQUEUE.

f:

SLOAD AT LRU DECOOE RAM ..

* =0 ‘
=1 ~fl

$LOAD C LRU DECOOE RAM

* =0
=1 ,.

SflEMR

*’ =0
=1

StlEMSTART R

,* =0
=1 !sTARTA MEMORYREAOTHRO~H THE SWITCH

6

$llEflSTART W

*

8MIC BR ADR<O:ll>

*

S1’lICBR SEL<0:2>

START
tlICBR

srlIcCONOSEL<O:2>

1 *“

!fl]cR()BRANCH AOORESS

=0

=0 I“P IBOX START ADR<O:ll>”
=1 i“MIC BR AOR<6:11>”

=0 ,’

=1
4



( A6
●

$tlICEN INT

*

$tlICJSR
*

*

$OUT SEL<O:l>

c
* REG

CONST

SREG R ADRc8:4>

*

$REG W AOR<8:4>

*

SREL INTERPROC INT

*

$RESET INSTR QUEUE

*

$SET CMOOIFY BIT

NO
*,

SSET EUAR

*

=0
=1

=0
=1

=0
=1
*2

=0

=0

=0
=1

=0
=1

f

:!

1-SequencerMicro-Code Fields 311

!ENABLEMICRO INTERRUPTS

loo A Jump To SUBROUTINE

!sELEcTsTHE souRcE FoR THE REAO ONLY OATA
!THE “OUT A“ OR “OUT B“ LINES.

!DATA BEING READ OUT OF THECACHE
!sfJuRcE A REGISTER

~~;n~~:ATECONSTANT OR CACHE AOR IF C AOR SEL

!REGIST’ER READ AOORESS

!REGISTER WRJTE AO(JRESS

!lNTERPROCESSOR INTERRUPT HAS BEEN SERVICED.
!ALLow THE SWITCH TO SENO ANOTHER!

!c~EAfiJ jT OUT

!DON’TSET CACHE MODIFY BIT IFWRITE

!sET EBo)(WRITE ADDRESS REGISTER TO THE
!ADoREssoF THE woRo BEING REAO OUT OF THE
!cAcHENowe . .



●

I

I 312

MiET OP

*

SSRC REG CTL<O:l>

* ‘i33fADR

AOD

SSRC REG OUT SEL

*
;

SSWITCH START W

*

ST R AOR<0:2>

*

ST U ADR<0:2>

*

STRANS’AOR

S,UPDATEAT LRU BITS

*

WJPDATE C LRU BITS

*

l)WTRANS

*

I-SequencerMicro-CodeFields A6

,
!SET &J))( OPERAND REG]’STER 1

,’

!sRC(AOR B) REGADR=IIREGR A0R<0:4>t’
! II =“001REG AOR<0:4>”
! 11 =SUMOF ABOVE TWO FIELOS

!START A HEfloRy ~R[TE T~R(’JuGH Tf+

!T REGISTER STACK READ ~(jfJf+Ess

IT REGISTER STACK WRITE A~REss

loo A VIRTUAL To PHYSICAL ADORESS
!~N THE MEMORY A~oREs$j

..

SklITCH.

TRANSLATION

!DI)N’T TRANSLATE THE flE’lI)Ry AODRESS . 00

!ABSOLUTE ~Mfjf/y ADORESS]NG

!JJoATE THE ADDRESS TRANSLATION LRU BITS

!UPDATE THE CACHE LRU BIT

!WRITE INTO THE AODRESS TRANSLATION CACHE



*

●

I

I

1

I

I

I

I

313

A7. I-Seuuencer Micro-Code Macros ,0

%A+B(LEG)

%B (LEG)

%BR
,.

%CR

%CR OP+F(F)

%CR OP+R+F(S,F)

%CR OP*RS(SEL)

XCR Op+RS+F(SEL,F)

%CR R+F(F)

%CR R+R(O,S),.

%CR R+R+F(O,S,F)

%CR ReRS(D,SEL)

%CR R+RS+F(O,SEL,F)

%INO REG

%INDEX TRANS(SEL)

%INDEX(SEL)

%REG W(ADR)

%TR,(S)

%TW(D)

%TWR(D,S) ‘

%T+F(F)

%T+R(O,S)

%T+R+F(O,S,F)

%T+RS(O,SEL)

%T+RS+F(O,SEL,F)

[ADD F=A+B,ADD LEG B=LEG]

[AODF=B;ADD LEG B=LEGI

[IIICBR ADR]

[C,OPERATION=l,UPDATEC LRU BITS=l,OUT SEL=cl

[CR,SETOP=l,INOEX TRANS(T),ADDF=B,AODLEB B=FI

[Ci,SET’OP=l,REGR AOR=S,INDEX TRANS(T),A+B(F)I

[CR,SETOP=l,INDEX TRANS(SEL)I

[CR,SETOP=l,INDEX TRANS(SEL),A+B(F)I

[CR,REGW(0),B(F),INOEXTRANS(T)I

[CR,REGW(D),INDEX TRANS(T),REGR ADR=SI

[CR,REGW(0),A+B(F),INDEXTRANS(T),REGR ADR=SI

[CR,REGW(D),INOEX TRANS(SEL)I

[CR,REGW(D),INDEX TRANS(SEL),A+B(F)I

[ADO LOAD INO REG=lI

[ADD LEG A=INDEX REG,TRANS AOR=l,INOEX REG ADR SEL=SEL]

[AOO’LEG A=INOEX REG,INOEXREG ADR SEL=SELI

[IBOX REG lJ=l,REGW ADRuADRI

[T RADR=SI

[T WADR=OI

[TW(0),TR(S)I

[TW(D),B(F)I o

[TW(D),INOEX(T),REGR ADR=SI

[TW(D),A+B(F),INDEXTRANS(T),REGRADR=SI

[TW(D),INOEX(SEL)1

[TW(0),INDEX(SEL),A+B(F)1

●

,.



314

A8.I-Sequencer Micro-Code

!EVALIJATEA sHoRT OPERAND (X=Ef)

!REG=O, I=0 REGISTER-DIRECT

SET OP=l,SRC REG CTL=OO,OONE

!REG=O,I=l REGISTER-INDIRECT ,,

CR R+RS(R1,OD),TW(T1),lNO REG,JSR(REG INDOP)

!REG”=l,I=@ SHORT-CONSTANT

SET OP=l,OUT SEL=CONST,00NE

!REG=l,I=l ILLEGAL

BR=ILLEGAL OP

! REG.2 ILLEGAL

BR=ILLEGAL OP

!REG=3-31,1=0 SHORT-INDEXED

CR OP+RS+F(OD,SO),DONE

!REG=3-31,1=1 SHORT-INDEXED-INDIRECT

CR R+RS+F(R1,OD,SO),JSR(MEM INDOP)

“

8

I
*



I

,

“1
.!

I
,,

A8 I-SequencerMicro-Code 915

!EVALUATE A LoNG opERAND wITH A FIXED BASE (X=l,XI=O,M=O,V=O)

,.
I

I

!REG=O, I=0 REGISTER-DIRECT

CR OP+RS+F(OD,FIX BASE),DONE;

!REG=$,I=l REGISTER-INDIRECT

CR ReRS(Rl,OD),TW(Tl),IND REG,JSR(REG IND);
CR OP-R+F(R1,FIX BASE),INDEX SHIFT,DONE;

!REG=l,I=O LONG-CONSTANT

* SET OP=l,OUT SEL=CONST,IMMEDCONSTLONG=l,DONE;

!REG=l,I=l LONG ABSOLUTE ADDRESSING

CR OPeF(FIX BASE),00NE;

!REG.2 ILLEGAL

BR=ILLEGAL OP:

!REG=3-31,1=Q SHORT-INDEXED

CR R+RS+F(R1,OD,SO);
BR=L1; !wAIT FoR cAcHE READ

!REG=3-31,1=1 SHORT-INDEXED-INDIRECT

CR ReRS+F(Rl,OD,SO),JSR(MEM INO);

L1: CR OP+R+F(R1,FIXBASE),INDEXSHIFT,DONE;



316 , L-SequencerMicro-Code As

!EvALIJATEA LoNG opERAND WITH A VARIABLE BASE (X=l,XI=O,M=O,V=l)

!REG=O,I=O REGISTER-DIRECT

T+RS+F(T1,OD,VAR BASE),INDEX SHIFT;
CR OP+RS+F (VB,REG,T),TR(T1),DONE: .

b !RE&+),I=l REGISTER-IMJIRECT

CR,RtRS(R1,OO),TW(Tl),INO REG,JSR(REG INO):
T+R+F(T1,R1,VAR BASE),INOEX SHIFT:
CR OP*RS+F(VB REG,T),TR(T1),00NE; ‘d

,’
!RE&l,I=O LONG-CONSTANT

1’
SET OP=l,OUT SEL=CONST,lMMEO CONST LONG=l,DONE:

!REG=l,I=l LONG ABSOLUTE ADDRESSING

CR OP+RS+F(VB REG,VAR BASE),DONE;

! f3EG=2 ILLEGAL
*
BR=ILLEGAL OP;

!REG=3-31,1+ SHORT-INDE)(EO

CR RsRS+F(R1,00,SO);
BR=L1:

!REG=3-31,1=1 SHORT-INDEXEO-INOIRECT

CR R+RS+F(R1,00,SO),JSR(MEM INIJ);

L1: T+R+F(T1,R1,FIX BASE),INDEX SHIFT:
CR OPeRS+F (VBREG,T),TR(Tl),00NE:

I

I

●

●



L.i
0J

.

ii!z

y-
:-

m
“

a
a

2
-.

-.
-.

1-LlId~
-

0z0m-.
0c)-.

..
C

l
IJ.1
a

..
mmI.1.l
aE

l
a

0
.

z
.-

0z
.-

UE.1-0
-

Z

.

.
-a.-1

.

za.&
l

z0

●

●

‘$

●

●



( 318 ●

A9.E-Sea uencer Micro-Code Fields

$AOl SEL<O:2>

* NA =0
NA*2 =1
A =2
A*2 =3
MINUS ONE
z ::

$A23 SEL<0:2>

●

NA*4 =0
NA*8 =1
A*4 =2
A*8 =3
MINUS ONE =4
z =6

$AUTO MERGE

* 01S =0
EN =1

!~fl)(cTL, csAcTLe SELECT CSA AOl INPUT.

“a

!MM)(CTL. CSACTL. SELECT CSA A23 INPUT.

!H)(Mf3fj2, EN MEANS IBI))( coNTRfJLs MERGE

!~ERGING UNDER EB())( (JJNTRfJL
!flERfjINGUNDER IBI))( CONTROL



●

(

‘A9

i“

$BC SEL<0:5>

SW IN BOUNDS
SW N
SWZL
SUVL
Sw co
SW LE
FLOAT FIXL

* NEVER
PREVL
POST V L
EXP N
EXP V L

I fW_&EzE~OX
I

llANTV L
1 I ALL Z
I F ALL Z

B ALL Z
COUNT OONE

E-SequencerMicro-CodeFields

.

“!EBcflLIX,BRANCH CONDITION SELECT

3
=2
=3
=4
=5
=6
=7

=8 “
=9
=10
=11
=12
=13
=14
=15

=16
=17
=18
=19
=20
=21
=22

319

*



320 E-SequencerMicro-CodeFields A9

SW IN BOUNDS L =32
SWNL :::
SU z
Suv =35 >
SW CO L
SW LE L
FLOAT FIX

=36
=37
=38
=39

4
ALWAYS
PRE V
POST V
EXP N L
EXP V

PAUSE EBOX L
llANTZ
PIANTV
IALLZL

4 FALLZL
BALLZL
CO/JNTDONE L

8BR ADR<O:ll>

*
,.
I

SBR DESTe0:2>

RETURN

1*
START
BRANCH

I SHIFT
, FA
FIXREG
ALU COND

=40
=41
=42
=43
=44
=45
=46
=47

=48
=49
=50 ,,
=51
=52
=53
=54

!EBXcTL.BRANCH ADDRESS ,’

=0

“!EBXCTL,BRANCH CONTROL

=0 ‘
=1
=2
=3
=4
=5
=6
=7



A9

$BR NWAY<O:l>

2 WAY
4 WAY
8 WAY

* 16 WAY

$BYTE PTR PE

* HOLD
LOAD

sSW CO PE

HOLD
* LOAD

SCOND STATUS PE

* HOLD
LOAD

SCOND STATUS SEL

*, fi~NDCODES

$DONE

*

SEBOX CONTROL PE

*’ HOLO
LOAD

SEXP COIIPL

*
b

SEXP SUM PE

* HOLD
LOAD

=0
=1
=2
=3

=0
=1

=0
=1

:!

=0
=1

=0
=1

=0
=1

=0
=1

=0
=1

E-SequencerMicro-CodeFields 321

!EB)(cTL,NuMBER oF BRANcH DESTINATIONS

!TWO-WAYBRANCH
!FouR_wAyBRANcH<
!EIGHT-UAYBRANCH
!sI)(TEEN-WAYBRANCH

!SHFCTL.LOAD QW2 AND QW3 OF R

!FACTL, LOAD Sw co

!sTATus.LOAD CONDITION COOES

!STATUS.SELECT STATUS TO SAVE

!iJORflAL CONDITIONS COOES
!flIcR(_&cIJNsTANT

!FI)(GEN, LAST MICRO-CYCLE

,.

!EBOX2.LOAO CONTROL BITS FROM,IBOX.

!EXPBOX,COMPLEMENT EXPONENT

!EXPBOX.LOAD EXP SUM REGISTER

,



322

I SFA A IN SEL<0:3>
I

* A

I

B
Q
MC
z
A CO
B CO
Q co
Mc co
z co

$FA B*IN SEL

* B
s

$FA CTL SELC$:2>

* EBOX
● Dlv

RND
MULT
SAVED CO
GUARD
CO STATUS

E-SequencerMicro-CodeFields

=0
=1
=2
=3

::
=9
=10
=11
=12

=0
=1

=0
=1
=2
=3
=4
=5
=6
=7

!3]NADD<sELEcT FoR FA A LEG

!31NADD.sELEcT FOR FA B LEG

lop B
!SUM OUTPUT FROM CSA

!FAcTLOsELEcT FA CTL SOURCE

!DIVISION
!RIJUNOING
!MuLTIfJLy
!ADo CARRY (SAVEO)
~ADo GuARo
!ADo co FRof’1sTATUS WORD

A9

“o

.



m(Nc
o

-10a!2ou

N
m
o
o
u
l
u
m
@

m
--l-4-l-ld

@
J6Jm

N
U

C
O

O
O

@
N

U
C

O
O

O
SIN

-
C

O
O

O
S

N
m

r)m
m

es=
l-eu

m
m

m
u

l
L
n

m
@

W
u

u
u

u
u

u
u

ll
u

Ilu
u

u
II

II
II

u
II

II
u

U
u

u
u

●

U
39

m
m

%
!

m
m

!l?m
2

0
0

0
a

m
~

z
=

E
O
o
m
c

n
c
n

<
<

0
Z
z
o
o

zza
a

X
<

x
a

zo
o

<
a

u
.

<
z
z
z
t
u
z
m
a
e
Z
<
S
a
Z

a
a
e

.

*

m-zo
ld

*

●

—
-—

.

●



324

SFIXUP REG SEL<0:3>

* NEVER
ALWAYS

PRE V
MANT V
‘Sw z
SW IN BOUNDS
FLOAT FIX

$FIXUP REG TEST

* NO REG
REG

4 SFIXUP REGO CLK EN

* , DIS
EN

SFIXUP REG1 CLK EN

“* DIS
EN

SFIXUP REG2 CLK EN

‘*
●

DIS
EN

$FIXUP REN CLK EN

* DIS
EN

E-SequencerMicro-CodeFields A9

=0
=1
=2
=3
=4
=5
=6
=7

=8
=9
=10
=11
=12
=13
=14
=15

=0
=1

=0
=1

=0
=1

=0
=1

=0
=1

!FI)(REGesELEcT F])(LIPREG]sTER INPUT

.,.

!F])(REG.ENABLE TEsTING o~ FIXUP REGISTERS

!FI)(REG,ENABLE sETTING FIXUP REG $

!FI)(REGOENABLE sETTING FIXUP REG 1

!FI)(REG,ENABLE sETTING FIXUP REG 2

!FJ)(REG,ENABLE sETTING FIXUP REG 3



*Nc
o

+
-

Z
1

-
2u1

-
U

-J
zay0auE

1
-

Za+mz0$
)

0auE

-1I&
l

m
LL

Z
x

O
c
n

U
J
L
L

~
o

I&
z

-0s-C
n
m

m
m

.
.

1
-1

-

Zz0
0

aaaa0
0

----

i9
~

z0
I&

l
0

1
-

1
-aL
L
l

a

i-)
w-1IAmIiz30a-.

a0L

cl-i
G

=
o

t-
m

4
C

L
1-

x
(n

L
L
l

-.
-.

.
.

-.
-.

-.
-.

wo
0

(J
O

F
J
:

d
N

C
IO

-
M

a&
O

N
%

x0m
(4$nz0L

)

LxL
uIAc1uwz*

Lz(n

*
*

*
*

*
*

*
*

●

.
.

.
●



326

SMERGE LEN

‘* Qw
HW

$MERGE QWO
I*’

SMERGE (IW1

*

$MERGE QW2!

I *

I
$MERGE (2W3

*
I

I

8PM EN

I 01s
* b EN

ml sEL<0:2>

* FA

SHIFT
EXP

* FA/2
MUL
DIV

3MULT EN

* 01s
EN

$OP A AOR<$:4>

* z

E-SequencerMicro-CodeFields A9 ‘

=0
=1 ‘

=0
=1

=0
=1

f

=0
=1

:!

:!
=2
=3

::
=6
=7

=0
=1

=0

!rlxrlRG20

!’l)(plRG2,

!~)(MRG2*

!’l)(fqRG2c

!H)(MRG2,

!flxflRGl,

!flxf’’lRGl,

!HMxcTL,

QUOR HW MERGE.

FOR QWOUSE (M SEL OR 2) P

FOR QW1USE (MM SEL OR 2) .

FOR QW2 USE (MM SEL OR 2)

FOR QW3US~ (tlMSELOR 2)

ENABLE MUX MERGER OUTPUT

SELECT MUX llERGER

ENABLE tlULTIPLYOPERATION

!QREGIsTERCONTRfjLs3-INfJIJTADOER

!ERFC1,EBO)(A RECIsTERADR

!GARBAGE REGISTER



A9

SOP B ADR<0:4>

*, z

SOP w ADR<O:4>

* z

SPOST MAX PE
*

* HOLO
LOAD

8PRE EN

* 01S
EN

$PRE flAXPE

* HOLD
LOAD

4
,$Q t10DE<0:2>

i’

* ‘ LOAD
RIGHT 1
LEFT 1
HOLD
RIGHT 4

$RECOMP AOl

*

$RECOMP A23

*

E-SequencerMicro-CodeFields 327

=0

=0

2

$

=$
=1

=0
=1
=2
=3
=4 ,

=0
=1

=0
-1

!ERFC1. EBI))( B REGISTER /J)R’ ‘

!GARBAGE REG]STER

!.FRFC1, EBIJ( WRITE REGISTER ADR

!GARBARGE REGISTER

!STATUS, LOAD flA)( POSTNI)RH Af’lI)lJNT

!sHIFTR/sHFB())(e ENABLE PRENORMALIZATION

!STATUS, LOAD MAX fJRENORM AflouNT

!Q, CONTROL LINES To Q REG

!PARALLEL LOAD
!SHIFT R[GHT 1
!=J+IFT LEFT 1
!HOLD
!SH]FT RIGHT 4

!CSACTL, COMPLEMENT A LEG OF CSA

!csA~TLe coffILEflENT B LEG OF CSA

I

I
I
1’

I

‘i

I

●



328 E-SequencerMicro-CodeFields A9

SREPT CTR t100E<O:l> !fiEpTo REPITIT]I)N CT’R M(JM

LOAD
DEC

* HOLO

-1
=2
=3

$REPT CTR SEL !REPT. SELECT FA CTR OR MC CTR

!FA CTR
!M]CRO.CONSTANT CTR

FA
* MC

=9
=1

‘“
!F1)((J=N, CONTROL )( RESULT SIGNAL$RESULT SEL

ALWAYS
NO BRANCH

* NEVER
DONE
NO FIX

=0
=1
=2
=3
=4

!+=JJLT ALWAYS READY
!RESULT REAo’f IFF NOT BRANCH
!RESULT NEVER REAOY
!RESULT READY IFF DONE AND NOT FI)(UP
!RESULT READY lFF NOT F1)(IJP

!ROIJNOeLOAOLS BIT OF R<@:35>$RLSB PE

=0
=1

HOLO
* LOAD

!+)UND, ROIJNOING ffJDE$RND llODE<O:l>
STABLE
CEILING

* FLOOR

=0
=1
=2

SSHIFT A IN SEL<O:l> !=J+=BO)(, SELECT SH]FTER A INPUT

* A

iAQZflSIGN

=0
=2
=3

llSHIFTB IN SEL<0:2>

=0
=1
=2
=3
=4
=5

:;

* B
A
Q

!flERfjE GIJARD BITS
!NERGE GUARD BITS
!HERGE (JJARD BITS
!fR(TjE GUARO BITS

#

I

I



.
*

—
.—

-.N(?J

uN

c
Q

m
l

N
e
c
9

-1
-l

L
n
u
-)ln

ln
ra

fa
m

Ilu
u

u
u

II
u

1
-

6
))

U
J

-
z
O
I
J
J

*

L0uL
“(3L
u
aL
L
J

-.A

X
22

0
0

3
-IZ

Z
O
L
L
O
O

aZCll=:
i
-
z
a
u

IA
J
-J

J
l-h

-m
e

n
X
x
z
z

a
u
<
<

Z
Z

E
E

a
u

I--..G
S

L
n

m
cix

-.
-.

-.
-.

‘*

.



b
.

i
J

id-1IA
l

mzo

0C
o

co

Amu
)

zaat-*
*

aLo0aId1
-

~25mx0mL
IJ

sL“0waL
IJ

-.

n
on

<
<

J
0
0
0

-I-J
=

-.
-.

-.

.

*

●

—
—



A9

$XBOX ALU CTL<O:S>

A+O
A+l
A+B
A+B+l
A-B-1

;;!
A*2+1
A-1

NA
NA AND B
NA AND NB
z
NA OR B
B., A XNOR B
A AND B
NA OR NB
A XOR B
NB
A AND NB

b MINUS ONE
A ORB
A OR NB

* A

$XBOX B SEL<O:l>

B EXP
SCNT/llC

* HOLD

SXBOX SCNT SEL<O:l>

*

.

MC
SCNT

● HOLD

E-SequencerMicro-codeFields 331

=0
=1
=12
=13
=18
=19
=24
=25
=30

=32
=34
=36
=38
=40
=42
=44
=46
=48
=50
=52
=54
=56
=58
=60
=62

=0
=1
=2

=0
=1
=2;

#

!E)(FJBO)(, EXPBI))( ALU MI)oE/FljNcTION

!E@Bo)(, SELECT )@))( ALU B LEG

!LOAO MC
!LOAO SCNT
!HOLD



332 ●

A1O. E-Seauencer Micro-Code Macros

%AUTO llERGE[
SHIFT (A.Z.DEST).
FA(Z,B,E): ‘
AUTO MERGE ENB,flMSEL=FAI

%BR NZ DEC(CTR,ADR)[
BR DEST=BRANCH
BC SEL=COUNT DONE L,
BR ADR=’’AOR”,
REPT CTR SEL=’’CTR”,,
REPT CTR IIOOE=DECI

%BR Z DEC(CTR,ADR)[
BR DEST=BRANCH
BC SEL=COUNT DONE,
BR ADR=’’ADR”,
REPT CTR SEL=’’CTR”,
REPT CTR MODE=QECI

%BR(COND,ADR)[
BR DEST=BRANCH,
BR SEL=’’COND”,

%CHECK

BR ADR=’’ADR”I”

BOC(R) [
CSA A IN A*2,CSAB INZ,
FA(A,S,A+B),”
FIX SAVE(SU Z,’’R”)]

%CSA(A,B,CI)[
AOl SEL=’’A”,
A23 SEL=”B”
FA A IN SEL=’’CI”I

%DONE(COND)[
OP W AOR=IW,
BR DEST=START,
BR SEL=’’CONO”,
DONE=lI

%FA SEL(SOURCE)[
FA CTL SEL=’’SOURCE”I

%FA(A,B,C)[
FA IN(’’A’’B”),”),
FA CTL=’’C”I

!REPTO BRANCH NOT zERfJ AND ~Ec

!=J=T up BRANCH AOORESS flux
!BRANCH IF cfjuNT NOT DONE
!TD BRANCH ADORESS
!+LECTCOUNTER fJIJTpuT
!~EcREflENT SELECTED C(JJNTER

!REPT, BRANCH NOT ZERO ANO DEC
!+T up BRANCH ADDRESS MU)(
!BRANCH IF C(JJNT 00NE
!ToBRANCH ADDRESS
!SELECT CI)UNTER OUTPUT
!DECREHENT sELEcTf=’J CIJ(JNTER

!BRANCH TO ADR IF cfJJJ Is TRUE
!SET up BRANCH ADDRESS f’llJ)(
!SET up BRANCH CONDITION MUX

!INPUT TO BRANCH AODRESS MUX

!CHECK F(J+ pfJsT BAO ONES COUNT
!CSA GIVES (A*2)xfjR A
!A*2 Is oN A LEG, A IS ON cI LEG
!FIxup To R IFF
! A+((A*2) XOR A)=O

!=JLECT CSA A, B, Am C1 LEGS
!AOlSEL CONTROLS THE A LEG
!A23 SEL CONTROLS THE B LEG
!FA A ]N sEL coNTRoLs THE cI LEC

!OI)NE ]FF CONO
!MAKE SURE Iw Is WRITE ADDRESS
!SELECT,START ADR ON AOR flux
!SET up BRANCH CONDITION flux
!DONE IFF CI)ND

!SELECT SOURCE OF F/) CTL



I

AIO E-Sequencer Micro-Cwle Macros
I .

%FIXUP lNIT[
FIXUP REG SEL=NEVER,’
FIXUP REG9 CK EN=l,
FIXUP REG1 CK EN=l,
FIXUP REG2 CK EN=l,
FIXUP REG3 CK EN=lI

.
%FIXUP SAVE(COND,R)[

FIXUP REG SEL=’’COND”,
FIXUP REG”R” CKENI

%FIXUP(REG?,COND,AOR)[
BR DEST=START,
BR ADR=’’ADR”,
FIXUP REG SEL=’’COND”,
FIXUP REG TEST=’’REG?”,

I %FLOAT
1,

I

I

1’ %F~OAT

FIXUP EN=lI

SW OUT(R,FIXR,ADR)[
OPS(IU,’’R’’,Z),
XA(A-B),
SHIFT (A,Z,Z),R+SHIFT,MERGEEXP=l,
FA(A,B,A+$),LOAO COND,
FIXUP SAVE(FLOAT FIX,’’FIXR“),
FIXUP(REG,FLOAT FIX,’’AOR”),
DONE(ALWAYS),RESULT(NO FIX)]

SW POST(A,B,FIXR)[
SHIFT (’’A’’B’’B’’,POST),ReSHIFT,
CHECK BOC(’’FIXR“),
G SEL=POST,
XBOX SEL(EXP SUM,SCNT/flC,SCNT)l

%HOLD CO[
CO CONO PE=HOLDI

%IC[ 41

%10[ 51

%Iw[ 21

333

!cLEAR ALL FIXUP REGISTERS
lsELEcTFIxup fluxTo cLEAR
!ENABLE REG @ CLOCK
!ENABLE REG 1 CLOCK
!ENABLE REG 2 CLOCK
!ENABLEREG 3 cLocK

!SAVE Fl)(up COND IN FI)(UP REG R
!SELECT FI)(UFI COND
!ENABLE CLOCK OF FI)(UP REG R

!FI)(UP To ADR IFF C(JND (DR REG)
~=jELEcT START ADR
!ADR Is F1)(UP ADDRESS
!+LECT Fl)(up CONO]T]ON
!COND1TIONALLY TEST FI)(UFI REGS

!OUTPUT Sw FLOATING RESULT

IAOJUST EXPONE.JT By SH]FT CNT
!MERGE EXPONENT INTIJ SHIFT OUT
!TEST MANTISSA CONDITIONS
!SAVE FLOAT FIX C(JNOITION
!F])(ljpON REGS OR FLOAT FJ)(

!RESULT IFF No FIX

POSTNORMALIZE A:B, USE FIX R
POSTNORMALIZE BY FZC
CHECK BAD ONES COUNT
RECOMPUTE GUARO BITS
SET UP FOR EXPONENT ADJUS”

HOLD CO INCO REGISTER



334

%JSR(COND,ADR)[
BR DEST=BRANCH,

%LOAD

● %LOAO

%LOAD

%LOAO

%LOAD

BR SEL=’’CONO”,
BR ADR=’’ADR”,
JSR=lI

BYTE PTR[
BYTE PTR PE=LDADI

co [
SW CO PE=LOADI

E-SequencerMicro-CodeMacro$

‘CONO[
CONO STATUS SEL=COND COOES,
CONO STATUS PE=LOAOI

CONTROL[
EBOX CONTROL PE=LOAOI

REPT(CNT)[
REPT CTR MOOE=LOAD,
NC REPT=’’CNT”j

%MERGE(LEN)[
llEflGELEN=’’LEN”,
AUTO MERGEI

I

%MULTIPLY[
1 TRANS A SEL=FLOAT,

MULT EN=l,
FA(B CO,S,A+B),FA.SEL(llULT)i
Q MOOE=RIGHT 41

%OPS(W,A,B)[
OP W AOR=’’W”,
OP A AOR=’’A”,
OP B AOR=’’B”I

%RESULT’(CONO)[
RESULT.SEL=’’COND”1

%RET(CONO)[
BR OEST=RETURN,
BR SEL=’’CONO”I

!JSR To ADR lFF’CONO

A1O

!SET up BRANCH AOORESS MIJ)(
!!=JT up BRANCH CI)NO flux

!INPUT TO BRANCH ADORESS MUX
!ENABLE JSR

!LOAD co
!ENABLE LOADING OF fJJ REGISTER

!LOAD CONDITION STATUS
!SELECT CI)NO STATUS INPUT

!ENABLE LOADING OF CI)NO STATUS

!JJAD cfJiJTRfjL B]TS FROM IBIJ)(

!REPT, LOAO REFIITII)N COUNTERS

!ENABLE AUTIJ MERGE

!SET up MULTIPLY CYCLE
!TRANSLATE MULT]PLICANIJ
!ENABLE ~uLTIF’Ly CONTROL OF CSA
!SET up FA To MULTIPLY
!sHIFTMULTIPLIERRIGHT4

!SET up THREE REGISTER ADRS
!WRITE REGISTER ADORES$J
!READREGISTER /$fJoREs$j A
!READ REGISTER ADORESS B

!=JT RESULT ON THREE CONCIS:
!ALWAYS, NEVER, OR IFF No F1)(lJfJ

!RET IFF CONO

, !SET up BRANCH ADORESS MUX

!SET up BRANCH CI)ND fllJ)(

I

●



m5!<a

l-i-
t-+

U
u

u
tu

LLIIA
JI.

U
LU

-1-l_l_l
W

U
J
IU

U
J

LfJ(n
m

c
n

irL
L

IL
u

-<M
a
x>

xu
I-

<
<
J

<
L
1
7
J
L
-fJ

3
<
l--

-.
-.

-.
-.

-.

.-

-.
-.

-.
-.

-.
----

-.

.
.

.
.

‘<m
=

=
-!!l:n
IJJIA

I=
C

n
u

Ju

--

.
-E

-
=
:
<m

:
=

=
W

u
M

u
)

“didl-
.U

)m
z

(n
u

.am
m

m
.xX

x
<
0
0
0

-m
m

cn
-lxxx

!+

il.
z

z
’11

..J

-em
b

-1-1-1-
U

1.
Ll&

u
----

m
xxs
.rn

u
)cn

<

m
amLn

c
n

-Z
z

-aa
zaa
Lu

l-l-
-1~<~

.

1-IL
l--
aai-Ln~.

●

.

*



336

All.E-SeauencerMicro-Code
I
(

I

I
!**************************************~***************************************

I

I ADD Cl:

0PS(4,Z,Z), !sET up To wRITE Destination ]NTo R4
( START (IWHW; !sTART QW HW INsTRLJcT~ON

m:5~IA,1B),TRANs (Qw), !TRANsLATEopERANDs
!TAKE Destination jNTo 4

FA(A,B;A+B),LOAD CONO, !ADD AND sAvE sTATus
FIXUP SAVE(SW V,O); !sAvE FIxuFIcoNDITIoN

0PS(IW,5,4),
MERGE(QW), !flERGEREsuLT INTo Destination
DONE(ALWAYS),RESULT (ALWAYS), !ALwAysDELIvER A REsuLT
PIXUP(REG,NEVER, INT DVFL); !F]xup ]FF ovFL

!*******************************************************************************

ADD H:

0PS(4,Z,Z),
START QIJHW;

clgl:5AIA,IB),TRANs(Hu:

FA(A,B;A+B),LOAD COND
FIX SAVE(HW V,@);

*

SET UP TO WRITE DESTINATION INTO R4
START QWHW INSTRUCTION

TRANSLATE OPERANDS
TAKE DESTINATION INTO 4
AOD AND SAVE STATUS
SAVE FIXUP CONDITION

4

0PS(IW,5,4),
MERGE(HW), !’lERGEREsuLT INTo Destination
DONE(ALWAYS),RESULT (ALWAYS), !ALwAysDELIvER A REsuLT
FIXUP(REG,NEVER, INT DVFL); jFIxup ]FF REG ovFL



All E-SequencerMicro-Code 337

!ADD s, ADD D

!*******************************************************************************

ADD S:
OPS(IW, IA,IB),TAKE, !TAKE BoTH opERANDs FRoM IBox

4 FA(A,B,A+B),LOAD COND, !Aoo AND SAVE STATUS
,DONE(ALWAYS),RESULT.(ALWAYS), !ALwAysDELIvER A REsuLT “
FIXUP(~WV,INT OVFL): !F]xuF’IFF sw v

!*********************m**m****************************************************,<

ADD D:
i“

%MSA [IA]
%llSB [IBI
%LSA [ICI
%LSB [IDI

!IIOSTSIGNIFICANT WORD OF OPERAND A
!MosT sIGNIFICANT WORD OF OPERAND 6
!LEASTSIGNIFICANT WORD OF OPERAND A
!LEAsTsIGNIFICANT WORD OF OPERAND B

I OPS(LSA,MSA,MSB) ,TAKE: !TAKE MOST SIGNIFICANT PARTS FIRST

I 0PS(6,LSA,LSB),TAKE, !TAKE LEAsT significant FIARTs
FA(A,B,A+B),LOAO CO, !ADD ANo sAvE cARRy
RESULT(ALWAYS); !DELIvERLEAsT significant REsuLT

OPS(IW,tlSA,llSB),
FA(A,B,A+B),FA SEL(SAVED CO), !ADD
LOAD COND, !sAVE sTATus
DONE(ALWAYS),RESULT (ALWAYS), !ALwAysoELIvER
FIXUP(SW V,INT OVFL); !F]xuF’IFF sw v

1

I

I

A RESULT

I
●

●



338 E-SequencerMicro-Code All

!INCQ, INCH

!************************************************w*****************************

INC Q:

OPS(Z,Z,Z), 4

START QW HW; !sTART Qw Hw Instruction

0PS(4,1B,Z),TRANS(QIJ), !TRANSLATEOPERANDS
FA(A,Z,A+l),LOAD COND, !lNCREMENTAND SAVE STATUS
FIXUP SAVE(SW V,O); !sAvE F]xp coNQITIoN . .i

0PS(IW,4,1A),
f’lERGE(QW), !flERGEQw INTo ouTpuT
DONE(ALWAYS),RESULT (ALWAYS), !ALwAysDELIvER TH]s REsuLT’
FIXUP(REG,NEVER, lNT OVFL): !F1xufJIFF ovFL

!********************************************w**~******w*w**************

INC H:

OPS(Z,Z,Z), ,,

START QW HW; !sTART Q~ Hw INSTRUCTION

b

0PS(4,1B,Z),TRANS(HW), !TRANsLATEopERANDs
FA(A,Z,A+l),LOAD COND, !lNCREMENTAND SAVE STATUS
FIXUPSAVE(SW V,O); !sAvE FIxup coNDIT1oN

0PS(IW,4,1A),
MERGE(HW),
DONE(ALWAYS),RESULT (ALWAYS),
FIXUP(REG,NEVER, lNT OVFL);

!MERGE Hw INTO OUTPUT
~!JJJAys DELIVER THIS RESULT
!F])(up ]FF OVFL

●

.

,



All E-SequencerMicro-Code 339

!lNC S, INC O

!*******************************************************************************

●
INC s:

OPS(lW,IA,Z),TAKE A, !usE oNLy opERAND A
FA(A,Z,A+l),LOAO COND, !lNCREMENTAND SAVE STATUS
DONE(ALIJAYS),RESULT(ALIJAYS), !ALMAysoELIvER TH]s REsuLT
FIXUP(NO REG,SU V,INT OVFL); !FIxup IFF sw v

!*******************************************************************************

INCD:

%tls [lBI“ !HI)sTsIGNIFICANT
%LS [51 !LEAsTsIGN]FJCAN’

OPS(LS,Z,MS),TAKE B; !TAKE flsAs THE B

OPS(Z,Z,LS),TAKE B, !TAKE Ls As THE B
FA(Z.6.A+B+l).LOAD CO. !INCREMENTLOW HA

WORD
WORD

OPERAND

OPERAND
F AND SAVE CARRY

RESULTiALWAYSi; !ALwAysoELIvER THIs REsuLT

oPs(llJ,m,z),
FA(A,B,A+O),FA SEL(SAVEO CO),
LOAD COND,
DONE(ALWAYS),RESULT (ALWAYS),
F’IXUP(NOREG,SLJV,INT OVFL);

!USE THE SECOND HALF OF THE OPERAND

!ADD THE SAVED CARRY fJuT
!SAVE THE STATUS

!ALWAYS OEJVER THIS RESULT

!FJ)(ujJ IFF (’JIf+



!

I

I

340 E-SequencerMicro-Code All

FADD FR S:

%SMALL [41 !sflALLERoF IA AND IB
%lA+IB ;:: !INITIALRESULT IA+lB
%POST !REsuLToF FIosTNoRMALIzATIoN

%PRE ‘ [01 !PRE ovERFLow F]xufJREGIsTER . 4

%BOC [11 !BADONEsCOUNTFI)(UPREGIsTER
%FF 1X [21 !FLoAT FIx FIxufJREGIsTER

OPS(Z, IA,IB),TAKE,
XBOX SEL(A EXP,B EXP,HOLD),XA(A-B), t!suBTRAcTExpoNENTs >

EXP SUM PE=LOAD, !sAvE ExpoNENT Difference
FIXUP INIT; !INITIALIZEFIXUP REGISTERS

OPS(StlALL.lA.IBl.TRANS(FLOAT.FLOAT),
PRE EN=1,SH1FT(Z:B,36-EXP SUti),R&HiFT,
FIXUP SAVE(PRE V,PRE),
G SEL=BZC,
BR(EXP N,FADO FR S A SMALL);

OPS(IA+IB, IA,SNALL),TRANS(FLOAT,FLOAT),
FA(A,B,A+B),FA SEL(GUARD),
G SEL=ADD,
XA(A),EXP SUM PE=LOAD;

FADD FR S JOIN:

OPS(POST, IA+IB,Z),
FLOAT SW POST(A,Z,BOC):

FLOAT SW OUT(POST,FFIX,FADD FRS FIX);

!PRENORMALIZE SMALLER
!cHEfj( pRE.JfJRti OVERFLOW

!SAVE GUARO BITS

!BR ON Exp DIFFERENCE SIGN

!IB IS SMALLER
!ADD IA ANo lB w]TH GuARD BITs
!sAvE THE REcoflpuTEDGuARD BITs
!sAvE THE LARGER ExpoNENT

!cotiEHERE IN BOTH CASES

!pIJsTfJORflALIzE

!_JJTf+JT FLOATING REs~T POST

FADD FR S A SMALL:

OPS(IA+lB,SNALL ,IB),TRANS(FLOAT,FLOAT),
FA(A,B,A+B),
:A~&,~;~ SUM PE=LOAD,

BR(AL~AYS:FADD FR S JOIN);

!IA IS SMALLER
!ADD IA AND ]B
!sAvE THE LARGER ExpoNENT
!REconFIuTEGuARo BITs
!RETuRN To F]NIsH FADD



LuNYaEa!31
-030C
L

-...

z0m
-.

-NN
.<

-

m
-

1
-1

-

“2
g

-L.
I-3
gcn

n
+

-<m
o

tA
J

O
IL

.-?J

z0
E

IA
1l.1.l

rJl-
Z

cn
lM

-
Ec

l

Lnk!#
l-

u
,.

Z
-L

U
02+

zo1
--

&
~

L

IJ
.IZ

L
U

O
N

l-L
-

(J
X

J
gu

a

l-
L

u
l-

m
>
.-

3
4
Z

u
)u

J
-

zc
l

L

(nwmS~0mzuaIJ
.1

xg0u

a
x

Z
o

--lm
u

Z
m

a
u

0
>

a
o

j+
-

U.-

------
-.

-.
-.

-.
-.

-.
-.

-.
-.

-.
-._.

------
-.

----
-.

-.
----

-.

w
-

-1C
(J

1
-L
f

IA00E

k-u
-

--

.
.

.<0ii
.

-xl-u
)

U
&
a
u

-1-
lL

-

+
-5

<
c

c
l

o-IL
I.L

x

;?’
.

zm
-

am
w

a
-a

em
~

iu
-J

ac
c

l

o04IAx“ILL
La“z30a+30zu
)

.
4
s

oii?-.(J
3
-

Z
o

z%+
3

&
i

-cl
.-

i%
-1

-1
$

-4
L

lJ
<
(n

L
L

l
r

&
C

J
3
4

z
<

“‘.
=
)

--
m

m
“?

O
-IL

-4n
x

+
.-au

am
II

.

uo-1IL
..

os
.-

.-
->0Z

n
az-a

-1-12U
-J

am
-.-

----
U

ln
a
b

G
-i

----
----
m

+
cvm

----

.-1
-

--<
w

<
fn

-cn
-

Q
a

a
O

L
L
C

)X

+
5d

.

*

.

●



E
1

-1
-

ZE’

x
x

rJ
-J

l-

az1
-

a0-1L
--

5~2
3

0-.
-.

-.
-.

..

mE

U
3

.-

L
.)

0m
.

.a
xiu-
0-:
amaoa

m

IAIL
.

!-+
Jv-l

uIL

.

1
-

<0-1u

,



All E-SequencerMicro-Code 343

I

FMULT SR S:I
I

%MPCNO [IA]
I %MPYR [IBI
I %PROD [41

%POST [51
1 %ROUND [61
I

%BOC [01
%FF IX [11

‘1 %RND V [31

OPS (Z,MPCND,MPYR),TAKE
SHIFT (A,Z,Z),R+SHIFT,
Q MODE=LOAD,
XBOX SEL(A EXP,B EXP,HOLD),XA(A+B),
EXP SUM PE=LOAD;

OPS(PROD,tlPCND,Z),
XBOX SEL(EXP SUfl,SCNT/MC,MC),MCEXP=128,* XA(A-B),EXP SUM PE=LOAD,
LOAO REPT(5),
MULTIPLY:

FMULT FR S Ll:

OPS(PROO,flPCND,PROD),
MULTIPLY,
BR NZ DEC(llC,FtlULTSR SL1);

OPS(POST,PROO,Z),
FLOAT SW POST(A,Q,BOC);

!’luLTIpLIcAfJJ
!MULTIPLIER
!PRODUCT REGISTER

!=IRODUCT AFTER F’osTNfJRflALIzE
!RESULT OF ROUNDING

!BAD ONES COUNT FI)(UP REGISTER
!FLOAT FIX FI)(UP REGISTER

!RouNDINGOVERFLOW FIXUP REG

!PUT fllJLT1pLIER ON SHIFTER I)UT
!JJAD Q REGISTER WITH MULTIPLIER
!ADD EXPONENTS

!CORRECT EXPONENT FjlJ/1

!SET up COUNTER

!D(J ONE tiLIL’TjpLy CYCLE HERE

!Do ANOTHER HULTIPLY CYCLE
!REPEAT MULTIPLY CYCLES

!P(JSTNORMALIZE A:Q

OPS(ROUND,POST,Z),
FA(A,B,A+B),FA SEL(RND),RND IIODE=STABLE, !pERFoRflsTABLE RouNDING
FIXUP SAVE(MANT V,RND V); !cHEcK RouNDING ovERFLow

FLOAT SW OUT(ROUND,FFIX,FMULT SRS FIX); !ouTpuTFLoATING REsuLT RouND



344 E-SequencerMicro-Code All

!lNC (SK IP, JUMP), DEC (SKI P, JUMP)

!*************************************************************~***************
~,

INC (SKIP,JUMP):
.

● 0PS(4,1A,Z),TAKE, !TAKE opl As A opERAND &

LOAD CONTROL, !sAVE BRANCH CONOITION ETC
FA(A,B,A+l>), !INCREtlENTOP1
RESULT(ALWAYS); !ALWAYSOELIVER OP1+l

,
I 0PS(IW,4,1B),

.

FA(A,B,A-B),
b

!coMfJARE~1+1 w]TH op2
I LOAD COND, *

TEST WRONG BRANCH=EN, !TEsT wRoNG BRANcH
DONE(SW V L): !ooNE IFF NoT ovFL

BR(ALWAYS, INT OVFL); !NoT ooNE so Go To ovERFLow
I

I
!***************************************~*********************************

I DEC (SItlP,JUMP):

0PS(4,1A,Z),TAKE, !TAKE ofJlAs A opERANo
LOAD CONTROL, !sAvE BRANcH coNDITIoN ETc
FA(A,B,A-1), !DEcREMENTopl
RESULT(ALWAYS) ; .!ALwAysoEL]vER opl-1

0PS(IW,4,1B),
FA(A,B,A-B), !coflpAREopl_l wITH op2
LOAO COND,
TEST WRONG BRANCH=EN, !TEsT wRoNG BRANcH

I DONE(SW V L); !ooNE IFF NoT ovFL

BR(ALUAYS, INT OVFL); !NoT ooNE so Go To ovERFLow

*



All E-SequencerMicro-Code 345

!sKIP Q, SKIP H, SKIP S, SKIP O

!*******************************************************************************

SKIP Q:

OPS(Z,Z,Z), !RECEJVE Qw OPERANDS

START QW HW;

OPS(IU, IA,IB),TRANS(QW),
FA(A,B,A-B),
TEST WRONG BRANCH=EN,
DONE(ALklAYS);

!TRANSLATE QIJ OPERANDS
!COMPARE
!T~=jT lJRONG fJf/A~fJ+
!No RESULT

!*******************************************************************************

SKIP H:

OPS(Z,Z,Z), !REcE]vEHw opERANDs
START QW HW;

OPS(IW, lA,lB),TRANS(HW), !TRANsLATEHw opERANDs
FA(A,B,A-B), ~coflPARE
TEST WRONG BRANCH=EN, !TEsT wRoNG BRANcH

* DONE(ALWAYS); !No REsuLT

!*******************************************************************************

SKIP S:

OPS(IW, IA,IB),TAKE, !TAKE BoTH opERANos
LOAD CONTROL, !LoAD BRANcH coNoIT1oN ETc@
FA(A,B,A-B), ~coflpARE
TEST WRONG BRANCH=EN, !TEsT wRoNG BRANcH
DONE(ALWAYS); !No REsuLT

!************~*****************************************************************
●

SKIP D:

%MSA ‘ [IA] !f-losTsignificant woRD oF opERAND A
, %tlSB [{B] !flosTs]GNIF]cANT woRo oF opERAND B
( %LSA [ICI !LEAsTsIGNIFICANT woRo oF opERANo A

%LSB [ID] !LEAsTslGN]FJcANT &.JDRDoF opERAND B
i’

OPS(LSA,llSA,flSB),TAKE, !TAKE flosTs]GN]FIcANT pARTs FIRsT
LOAD CONTROL; !LoAD BRANcH coNDITIoN ETc.

0PS(6,LSA,LSB), TAKE,
FA(A,B,A-B),LOAD CO:

OPS(IW,MSA,flSB),
FA(A,B,A-B),FA SEL(SAVED CO),
TEST WRONG BRANCH=EN,
DONE(ALWAYS):

!TAKE LEAST SIGNIFICANT pAf+Ts
!SUBTRACT ANO SAVE CARRY

!SUBTRACT
!TEST WRIJNG BRANCH
!ALWAYS DELIVER A R&=j~T



●

i?

17flS3ti ONi
HONVU9!3NOIMlS31i

SllNVk13d03H1aNVi
“313NO111CIN03H3NVMlaV07i

SaNVti3d0H1OI331Vli

4‘(SAV1’llV)3NOCl
‘N3=zH3NVH8CINOHM1S31,

‘aNo3avo7
‘(aaNvV’a’v)vd

‘70H1N02awol
‘3)iVl’(81’VI’MI)Sd0

:S(ZN’Z)dIXiCINV

***************************************W**********************************,***i
.

1711S3HONi:(SAVM7V)3NOCI
H2NVLM3!lNOW’1lS31i‘N3=H2NvtN3C)Nakl’11s31

‘aNo3avan
SaNVk13d03H1flNVi‘(8aNvV’a’v)vd

SClNVk13d0IIH31VlSNVklli‘(MH)SNVtJI’(En’Vl’MI)SdO

‘~HMCIltlVIS
SCINV&HdOMH3A1333kli(Z$z’z)sda

:H(ZN’Z)dIXSaNV

*******************************************************************************i‘

17flS3HONi:(sAvmlv)3Naa
H3NVLi8flNOW’1lS31i‘N3=H3NVEKI9NOklM1S31

‘aNo3avo7
SaNVk13d03H1ONVi‘(f3aNvV’a’vlvd

SClNVk13d0MD31V7SNVklli‘(t’ID)SNVtll’ (f31’VI’MI)Sd0

:MHI’13lUVIS
SCIN%’k13dCl MD3A1333Ui‘(z’z’z)sda

*******************************************************************************i

dIISONV‘CI(ZN’Z)dIX3CINVi

956 .



.
-

..

0
----
am

m
o

----
----

------

..
4-1n

ti”U
N

ak-
.(L

---

if
aL

z-I.1+
.

x
Gz

:
0

c
.-

-m
m

.-
-3N

Z
-U

~
.-O

Z
<

N
~Z

03
.

.ou
_J

z
m
u
x
a

-
-
-

-
<

O
+
I
J
J

C
n
-
<
f
m
z

C
L
a
o
u
o

O
L
L
J
+
D

—

uU
-)

0za

$
-0

.
-

“<n
+u

.1
U

)-<
(J3

a
a
oi.u

?
5

O
k
-J

I-a

9



348 E-SequencerMicro-Code All

ANO SKIP NZ D:

%llSA [IA]
%MSB [IBI

ei

%LSA [ICI
%LSB [IDI

OPS (LSA,MSA,MSB),TAKE,
& LOAD CONTROL,

FA(A,B,A ANDB);

0PS(6;LSA,LSB), TAKE,
FA(A,B,A AND B),
BR(SW Z L,ANDSKIPNZDL1);

OPS(IW.Z,Z),
FA(A,B;ZEROj,
LOAD COND,
TEST WRONG BRANCH=EN,
DONE(ALWAYS);

● AND SKIP NZ DL1:

0PSilW,6,ZJ:
FA(A,B,A),
LOAD COND,
TEST IJRONGBRANCH=EN,
DONE(ALWAYS);

.

!NI)STSIGNIFICANT WORD OF OPERANDA
!flosTSIGNIFICANT WORO fJF OPERAND B
!LEAST’ SIGN]F]CANT WORD (J= IJPERAND A
!LEAST SIGNIFICANT WORD OF OPERAND B

Q

!TAKE flosT S]GNIFJCANT PARTS FIRST
!LI)AD BRANCH CONDITION ETC.
!AND THE fi(J$jT SIGNIFICANT PARTS Now ‘

!TAKE LEAST SIGNIFICANT PARTS c

!AND THE LEAST SIGNIFICANT PARTS
!BRANCH IF (NSA ANO flsB)&

!PUT A ZERO OUTPUT ON THE F/$

!TE$JT WRONG BRANCH
!NoRESULT

!(MSA AND llSB)XO

!REAO BACK (LSA AND Lfj)
!PUTI)(JT (LSA AND LSB) ON THE FA

!TEST WRI)NG BRANCH
!NI)RESULT

4

I

1



t
All E-Sequencer Micro-Code 349

!SHIFT LEFT L Q, SHIFT LEFT L“H

!*****,**************************************************************************

SHIFT LEFT L Q:

%0 [1A] !DATA
%SCNT [lBI !sHIFT couNT

OPS(Z,Z,Z),
START QU HIJ;

DPS(4,D,SCNT),TRANS mu)
SHIFT(A,Z,B QW3), !sH]FT DATA
TEST BOUNDS(91,FIX SAVE(SU lNBOUNOS,O): !sAvE g>scNT~@ IN FIx REG @

0PS(IU,4,Z),
MERGE(QW), !MERGE Qw INTO R

DONE(ALWAYS),RESULT(NO FIX), !DELIvERREsuLT IFF No FIx
FIXUP(REG,NEVER,SW LOGIC ZERO); ~F1xup IFF scNT NoT JN BouNDs
!*******************************************************************************

SHIFT LEFT L H:

%0 [1A] !OATA
%SCNT [IBI !sHIFTC(JJNT

OPS(Z,Z,Z),
START QW HW:

0PS(4,D,SCNT),TRANS (HW)
,!

SHIFT(A,Z,B QW3), !sH]FT oATA
TGST BOUNDS(18),FIX SAVE(SW IN BOUNDS,O); !sAvE g>scNT~@ lN F]x REG Q

oPs(IlJ,4,z),
MERGE(HW), !MERGE Hw INTo R
DONE(ALWAYS),RESULT (NO FIX), !oEL1vERREsuLT IFF No FIx
FIXUP(REG,NEVER,SM LOGIC ZERO); “ !F1xup IFF scNT NoT ]N BouNDs

.

.

i’

●



350 E-SequencerMicro-Code All

I
!SH]FT LEFT L S, SHIFT LEFTL D

1 !*****************************************m****************w******************

I
SHIFT LEFT L S:

I

%D [IA] !DATA
I %SCNT [IBI !sHIFTcouNT
1

OPS(IU,D,SCNT),TAKE,
SHIFT(A,Z,B QW3), !sHIFToATA
DONE(ALWAYS),RESULT(NO FIX), !oEL]vERREsuLT IFF No FIx
TEST 130UNOS(36), !TEsT 36>scNT~$
FIXUP(SW IN BOUNOS,SW LOGIC ZERO); !FI)(UP IFF SCNT NOT IN BI)IJNDS

!*********************************************************m*******************

SHIFT LEFT L D:

%DO [IA]
~SCNT [101
%01 [Icl
%00s [51

OPS(D1,Z, IB),TAKE,
TEST BOUNDS,
LOAD BYTE PTR;

OPS(D$S,D1,Z),TAKE A,
SHIFT(D1,Z,B QW3),
BR(SW IN BOUNDS L,DW LOGIC .ZERO
RESULT(NO BRANCHI;.

OPS(IW,D@,Dl),
SHIFT(D0,Dl,C20 B 12W3),
OONE(ALWAYS),RESULT (ALWAYS):

!DATA W(JRO 0 (HOST SJGNIFJCANT)
!=J+IFT COUNT
!OATA WI)RO 1 (LEAST SIGNIFICANT)
!Do SHIFTEO

!PREPARE To ACCEPT ]C
!TEST 72>scNT~f3
!SAVE SCNT FOR LATER

!ACCEPT Ic

!CREATELOW ORDER WORD
●

!GIvE zERo IF scNT NoT IN BouND
!RESULT IFF S(JJT IN BOUNDS

!SCNT Is IN BOUNOS
!CREATE H]GH ~DER WORD
!ALtJAysDELIVER A RESULT

.“



All E-SequencerMicro-Code 351

!LBYTE, DBYTE

!********************************~*********************************************

LBYTE:
4

%BIJ [IA] !BYTEWORD
%BP [IBI !BYTE LEN, BYTE Pos

0PS(4,:W,BP),TAKE,
,“[ SHIFT(A,Z,B BYTE POS),R&HIFT; !LEFT JUSTIFY BYTE

i’ 0PS(IW,4,BP),
SHIFT(Z,A,B BYTE LEN),R&H1fT,
DONE(ALWAYS),RESULT (ALWAYS);

!SHIFT BYTE INTO RESULT WORD
!ALWAYS DELIVER RESULT

!*******************************************************************************

I
DBYTE:

I %DW, [IA] !DEsTINATIoNwoRD = T:E:B
%BP [IBI !BYTE LEN, BYTE Pos
%BW [41 !BYTE WORD = C:D:)(

!)(=E,O=T, C=EI

0PS(6,DW;BP),TAKE, !sET up To AccEfJTD
SHIFT(A,A,B BYTE POS),R@HIFT, !R6 e E:B:T
LOAD BYTE PTR; !LoAD BYTE PTR REG FoR LATER

I

0PS(S*6,BP),
SHIFT(A,A,B BYTE LEN),RtSHIFT; !R5 + B:T:E

0PS(7,4,5),TAKE A, !R4 ~ BYTE woRD c:D:x
I

SHIFT(A,B,36-C20 BYTE LEN),R+SHIFT; !R7 ~ x:B:T
I

1

0PS(IW,7,Z),
SHIFT(A,A,36-C20 BYTE POS),R-SHIFT,
DONE(ALWAYS),RESULT (ALMAYS):

4

!RE$JJLT + T:)(:B
!ALWAYS DEL]VER A RESULT



352” E-SequencerMicro-Code All

LBYTE 1NC:

%BW [IA]
%BP [IBI
%BL [41
%13A [51
%LR “[61
%NBP [71
%Tl ‘[81
%T2 [91
%T3 [101
%NBA [111

OPS (LR,BU,BP),TAKE,
SHIFT (A,Z,B BYTE POS),R4iHIFT;

OPS(LR,LR,BP),
SHIFT(Z,A,B BYTE LEN),R+SHIFT,
RESULT(ALWAYS):

OPS(BL,Z,BP),
SHIFT(Z,B,MC),MC SHIFT=27,
FA(Z,B,Z),llERGE QW3=1;

●

OPS(T1,BL,BP),TAKE ‘B,
cSA(A*2,Z,B),FA(B CO,S,A+B):

0PS(T2,Z,T1),
FA(MC,B,A-B),MC=36;

OPS(NBP.BL.BP).
FA(A,B,A+Bj, ‘
BR(SW N,BYTE POS OVFL);

OPS(NBP,NBP,BP) ,
SHIFT (A,Z,Z),FA(Z,B,B),MERGE QW3=1,

● RESULT(ALWAYS);

OPS’(IW,BA,Z),
FA(A,B,A):
DONE(ALUAYS),RESULT (ALWAYS):

I

BYTE POS OVFL:
1’

OPS(NBP,Z,BP),
#

SHIFT (Z,Z,Z),FA(Z,B,B),MERGE QW3=1,”
RESULT(ALWAYS) :

I OPS(T3,BA,Z),
! SHIFT(A,A,MG),HC SHIFT=6,R&H1FT;
I

0PS(NBA,Z,T3),
FA(MC,B,A+B),MC=256;

OPS(IW,NBA,NBA) ,
SHIFT(A,B,MC),flC SHIFT=30,ReSH1FT,
DONE(SW V L),RESULT(ALWAYS);

!DATA WI)RD
!BYTE LEN, BYTE FfJ=j

!BYTE LEN
!BYTE POINTER AD~REss
!LBYTE RESULT t

!NEW BYTE PO]NTER

!p(y3+2*LEf4
!3&pfJ$j+2*LEN
!BA ROTATED LEFT 6
!NEW BYTE POINTER ADDRESS

!BEGIN LBYTE INTO LR
!LEFT JUSTIFY BYTE ~

!$H]FT BYTE INTO LR
!ALWAYS DELIVER A RESULT

!ALIGNBYTE LENGTH As Qw3
!cLEAR Quo, Qwl, QW2

!BA + BYTE POINTER ADDRESS “

!Tl ● pfjs+2&EN

!T2 ~ 36_pOS+2*LEN

!NBfJ + PIJS+LEN

!BR [F pos+2~EN>36

!flERGEpfJj+LENINTOBpQW3
!ANDDELIVERNEWBYTEPTR

!fJ/?&sBACK ADDRESS UNCHANGED ‘

!BYTE POSITION OVERFLOW”

!’IERGE @ INTO BYTE PI)S Qw
!DEJVER NEW BYTE PTR

!ROTATE BA To LEFTJUSTIFY

!AoD 4 To BA

!ROTATE NEW ADDRESS
!PASSADORESS, OONE lFF NOT OWL

3

OPS(IU,Z,Z),

.

I



.

1-

●
✍✜

a:

s

.
9

●

.



I

I

I

I

I

354 E~SequencerMicro-Code

tlSBIT:

%D [IA] !DATA

%BP [IBI !BYTE LEN,BYTE pos

0PS(4,D,BP),TAKE,
SHIFT(A,Z,BYTE POSI,R+SHIFT; !LEFT JUSTIFY BYTE IN DATA WORO

0PS(5,4,Z),
FA(A,B,A+O), !sET up To TEsT BYTE slGN
MM SEL=IZC; ,!R5 ~ Izc

0PS(IW,5,Z),
FA(A,B,A+l), !INCREMENT IZC
DONE(SW N L),RESULT(DONE): !IF BYTE20 THEN DELIVER IZC+l

OPS(ILI,Z*Z), !ByTE<O
FA(Z,B,A),
OONE(ALWAYS),RESULT (ALWAYS); !DELIvER0 REsuLT

*

*



u
)in
m

\

.

.

.

—
—

—
.—

●



(J4vlixl)1-0112P4vtixixHl

*

f
1s3

Iilm

.



(10

_.—.-

Z1

<6>9

<6>b



s

III
<6:<>m

II



(ll*xfioI)1-0112MvaX*xaoI
●

II[1 I----11(1

I
I

PI-r-r’ (

II

●

..-____



——

IJm

r=J--

●

●

●



.—

$

—-—

I
c

-{

m<It:!3>14
Q3?

3<

a
Lm●u‘tt:8>W

—-—



w,.,’

-.

‘-x

4

(~IXfi81)1-0112HV21MIXf181

●

<6em

t

‘<1:91>1

X1X=

...,

8J~U

1

<tt:9~1
11+11?r<11:9>1

Wa
x1xe9

●

<g:e>l11+t121

w
<9,0>1

Xtxav

——
●

●



W,SC)O/Ml-011Z3NVtiMIXf181

—.

I

I

[[
<6:e>U

II

II

<g:e>l1
K*J;2

1

<g.e>
w

nlxe

8



(XIXIIOZ)1-0112J’+Ivli xlxfloz

●

—

(-J=3 m16
LI13et,<4.:e>u

II

r-t
SJme

c

1II

Ill*“

Ill

---1’:x1
[II

<c[:4>f

11

M
S)sstw

●

O:e>l1t+ll?.I<9e>1
IsM

Xlxeu

_—.——.



(Wxftoz)1-0112J4vtiX*?(m)z

II13!

&“
<6:.2J>W

●

<61:0>11141121

w
Xlxeei?

II

*

I1I
1<1>s5

ml

,.
S3m

w
1

Au
1

1‘0s>

S331$U

c

11411?I
<6t:e,

Ia#M
Xtxefa?

—
—.



5,-.*

1M3

& r,
m-1

2
z z

—1.6C-.Nr321
,9:0>33s30a3z

lm*

-3

“$
.—

●

—
—



S“d9“d

a
33.++?0

3
m-+0m.

-101053wmmAmsY3.+Llet-XoOl-

CII“da“dZmom..4e)‘dC9“dzs”dZ++oS9‘dm“d

9‘d9‘d

0w

C9‘dWad?++0W‘dm“d$33“d?9“dZ+N319‘d“’09“d

-!)-dc
wEel

<C:e>ssmu
LIE●

S0501

<<:*>S
11s●

tc:e>j

●



—
—-

* ml
c

C’0,6>
mm IGe:39~ 1 %R%l

z
z

al

0? L

.

●

36 BitBottomZeroesCounter(BZC)

,.



(XIXIN)1-0112J4vtixlxm
.

..
“1,13!

“A&
<6:e>W

II

.
—



.—..

-Q-l(M > 101I3

<> 2

c

4 BitCMP (4CMP)

,,..



I

!

-1●4+0

Lm

9“d
1!

9“d
I

,,!11!tI,

I
9‘d9“d

I--L
ee

m~b+soT‘i,-.

I,”

~

aa:em
“a●

1s101
snw

m3*

3w‘C:fd>v

u-‘%
u

1330<1:8>

‘dz lSW1

<snw :e>s
Ha●

w<1:9>U

II
1.

.

J/_I<C:*B3

.—
—-———

●



+>d“>,

7X3lW

A
m

1

0?
a,c2:9t>f

H99101
—OIMCI

lSWIIree

6

XJ

et

—-----+9910,“P
w

/)
m

em1

——



(YIxf19)1-0112MIvtixlxH9

II13!
III‘6:e>w

bbI s3m6

9

,9>.L1t-elli!I<9>f

LmM

I
Xtxat

I

&

III

W
441 93-U*

1

et>l
11-6112

x.<&>T

*
xtxEC

II
1I1

*

●

..
.



,- &.-.>*

III*

wI-&w-l

14
1II

*

+’ri
<Z>f

1I

II.

-.

●

.



Lw

..—

<b>d

<fxl
,2>0

——..—-



,-,,

(NIXWJ)1-0112JNvllxlxf18

●

+’:~:x-““‘=”
+-h

r+%



(Z9101J4)Z9101J4

●


